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ABSTRACT

Wavelet-based demosaicing techniques have the advantage of be-
ing computationally relatively fast, while having a reconstruction
performance that is similar to state-of-the-art techniques. Because
the demosaicing rules are linear, it is fairly simple to integrate
denoising into the demosaicing. In this paper, we present a method
that performs joint denoising and demosaicing, using a Gaussian
Scale Mixture (GSM) prior model, thereby modeling the local
edge direction as a hidden variable. The results indicate that this
technique offers a better reconstruction performance (in PSNR
sense and visually) than sequential demosaicing and denoising. On
a recent GPU, our algorithm takes 3.5 s for reconstructing a 12
megapixel RAW digital camera image.

Index Terms— Demosaicing, Image denoising, Bayer Pattern,
Complex wavelets

I. INTRODUCTION

The use of color filter arrays (CFAs), such as the Bayer
CFA is still very popular due to price and power consumption
reasons. While in the past, demosaicing and denoising has mostly
been performed sequentially, recently some researchers [1]–[4]
have explored joint demosaicing and denoising (sometimes called
denoisaicing [3]). Joint processing has the advantage that a number
of problems of the sequential approach (e.g., artifacts due to
incorrect selection of the interpolation direction and removal of
high frequencies) can now be solved.

While some techniques perform the demosaicing entirely in
the image domain (e.g., [1], [3]), it is beneficial to apply the
demosaicing in the wavelet domain of the CFA mosaic image.
The CFA mosaic image is a superposition of the individual CFA
component images and contains both chrominance and luminance
information, either non-modulated (chrominance and luminance)
or modulated (chrominance). As shown by Hirakawa in [5],
simple linear demosaicing rules can be derived to de-modulate
or de-multiplex the chrominance and luminance information in
the wavelet domain. Despite being very elegant and straightfor-
ward, one limitation are the hard assumptions required for the
chrominance and luminance bandwidths. These assumptions are
often violated in practice, resulting in color and zipper artifacts. In
recent work, we extended the approach of Hirakawa to the complex
wavelet domain and by integrating local spatial adaptivity in the
algorithm, it becomes possible to alleviate the problems with the
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bandwidth assumptions [6]. Moreover, we were also able to recover
some of the high frequency luminance information.

In general, wavelet-based demosaicing algorithms tend to recon-
struct high-frequencies in a natural-looking way, and the algorithms
have a relatively low computational time. Because the demosaicing
rules are linear, it is fairly simple to integrate denoising into
the demosaicing, within the same statistical framework [2], [7].
Whereas [2], [7] mainly focus on soft-thresholding and Wiener
filtering for noise removal, in this work, we consider Bayesian
Least Squares estimation under a Gaussian Scale Mixture (GSM)
prior model. The GSM prior model (see Portilla et al. [8]) is
one of the state-of-the-art image priors for the wavelet domain.
We consider several refinements in our modeling: as in [6], [9],
we take the local edge direction into account. In a statistical
framework, this is done by modeling the unknown edge direction
as a hidden variable. Next, the dual-tree complex wavelet packet
transform (DT-CWPT) from [10] performs a directional analysis
in 6 directions (opposed to the 3 directions of the discrete wavelet
transform). To obtain this directional analysis, a “complex phase
modulation” (PM) step is performed [10]. Because the PM hampers
the demosaicing reconstruction but is necessary for the directional
selectivity, we treat this step in a special way, by including it in
the demosaicing formulas.

The core idea of our approach is then 1) to exploit the properties
of the DT-CWPT for modeling edges in reconstructed images, 2) to
perform demosaicing in DT-CWPT transform domain in a spatially-
adaptive way and 3) to integrate this approach in a vector-based
wavelet denoiser (here: BLS-GSM). This leads to a joint denoising
and demosaicing approach, in which several problems are tackled
in a clever way.

The remainder of this paper is structured as follows: in Section
II, we discuss the image and noise modeling that is used in
this paper. Section III describes the proposed joint denoising and
demosaicing approach. In Section IV, experimental results are given
and discussed. Section V concludes this paper.

II. IMAGE AND NOISE MODELING

Consider an RGB color image, consisting of a red R(p), green
G(p) and blue channel B(p), with p = [p1, p2] the discrete spatial
position. For the Bayer CFA, the red, green and blue channels will
be sub-sampled according to the following operation:

Rm(p) = R(p)
(
1 + (−1)p1 − (−1)p2 − (−1)p1+p2

)
/4

Gm(p) = G(p)
(
1 + (−1)p1+p2

)
/2

Bm(p) = B(p)
(
1− (−1)p1 + (−1)p2 − (−1)p1+p2

)
/4 (1)
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Fig. 1. Frequency domain tiling of the DT-CWPT demosaicing scheme.
Green is luminance, magenta represents chrominance. (a) Default bandwidth
assumptions (q = 1/2), (b) Modified assumptions for horizontal edge (q =

1), (c) Modified assumptions for vertical edge (q = 0). (d) DT-CWPT
Subband names.

Similar sub-sampling formulas can be written for other (non-Bayer)
CFA designs. In each case, the CFA mosaic image is simply the
sum of the three sub-sampled signals:

M(p) = Rm(p) +Gm(p) +Bm(p). (2)

Employing a Poissonian-Gaussian approximation of signal-
dependent noise [11], [12], we assume the following signal+noise
model for the measured CFA mosaic image:

M(p) = X(p) + σ2
p(X(p))W (p), (3)

where X(p) is the “ideal” noise-free CFA mosaic image, and
where W (p) is white Gaussian noise N(0, 1). Here, σ2

p(X(p)) is
a channel and signal-dependent noise variance. For the purpose of
this paper, we will consider stationary noise with constant variance
σ2
p(X(p)) = σ2

0 , keeping in mind that our approach can easily
be extended to the more general case (using techniques from [7],
[12]–[14]).

III. JOINT DENOISING AND DEMOSAICING

A schematic overview of our approach is depicted in Figure 2.
First, we apply the two-scale 2D DT-CWPT [15] transform to the
CFA mosaic image M(p). In contrast to [15], the phase modulation
(PM) to compute the complex-valued coefficients is not applied
at this stage (this will be done later in this section). Doing so,
we obtain 4 times 16 real-valued wavelet packet subbands. Let
M

(i)
klmn (with k, l,m, n = H,L) denote a wavelet coefficient at

position p of the klmn-subband (see Figure 1(d)) of DT-CWPT
tree i = 1, ..., 4 (see Figure 2). To simplify the notations, we will
consider one fixed position the same time so that we can drop p

in the following. Furthermore, let us denote by R
(i)
klmn, G

(i)
klmn,

B
(i)
klmn the DT-CWPT of respectively R(p), G(p) and B(p). The

demosaicing rules of our approach from [9] (which does not include
denoising) are summarized in Table I. In Table I, the position-
dependent variable q represents the estimated edge direction at the

Table I. Locally adaptive complex wavelet demosaicing rules [9].

1) Luminance information (non-LHLL/HLLL/LLLL subbands):

Rklmn = Gklmn = Bklmn = Yklmn = Mklmn

where mn = LH, HL, HH, k = H,L, l = H,L

RHHLL=GHHLL = BHHLL = Yklmn = 0

2) Directionally adaptive reconst. of high frequency luminance information

(LHLL and HLLL subbands):

RLHLL=GLHLL=BLHLL=q
(

s
G
LHLLMLHLL−s

G
HLLLMHLLL

)

RHLLL= GHLLL= BHLLL=(q − 1)
(

s
G
LHLLMLHLL−s

G
HLLLMHLLL

)

3) Combined luminance and chrominance (LLLL subband):

GLLLL=MLLLL − sHHLLMHHLL

RLLLL=2(sHHLLMHHLL+ (1-q) sRLHLLMLHLL+qsRHLLLMHLLL)+MLLLL

BLLLL=2(sHHLLMHHLL+ (1-q) sBLHLLMLHLL+qsBHLLLMHLLL)+MLLLL
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Fig. 2. Overview of the joint denoising and demosaicing scheme.

considered position p. It is defined as follows:

q =







0 vertical edge

0.5 unsure

1 horizontal edge

(4)

Next, the variables sRLHLL, s
G
LHLL, s

B
LHLL, sRHLLL, s

G
LHLL, s

B
HLLL,

sHHLL are −1 or 1, depending on the shifts of p1 and p2 used
in (1) (see [9]). For example, for the Bayer pattern from Figure
2, we have sHHLL = sRHLLL = sGLHLL = sBLHLL = −1 and
sRLHLL = sGLHLL = sBHLLL = 1.

After applying the demosaicing rules, we want to benefit from the
improved directional selectivity obtained by the PM, we will take
this operation into account for the denoising part of our algorithm.
In particular, the PM is performed as follows [15]:
(

M
(r1)
klmn

M
(i1)
klmn

)

= P

(

M
(1)
klmn

M
(4)
klmn

)

,

(

M
(r2)
klmn

M
(i2)
klmn

)

= P

(

M
(2)
klmn

M
(3)
klmn

)

(5)

where P = 1√
2

(
1 1
−1 1

)

. M (r1)
klmn + jM

(i1)
klmn and M

(r2)
klmn +

jM
(i2)
klmn are then the resulting complex wavelet coefficients (here

j is the imaginary unit).

In the remainder of this Section, we consider the three types of
demosaicing rules from Table I. We express these rules each time in
the Bayesian framework, to obtain estimators that jointly perform
denoising and demosaicing.

III-A. Highpass luminance information

According to step 1) in Table I, the highpass luminance compo-
nents can directly be obtained from the DT-CWPT of the mosaic
image (Rklmn=Gklmn=Bklmn=Mklmn). Now we will extend
this step to include denoising, through (5). The Bayesian least
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squares estimator is given by:

X̂klmn = E [Xklmn|Mklmn] ,

= Ez,Mklmn
[E [Xklmn|Mklmn, z]] (6)

where Mklmn and Xklmn are vectors formed by column-stacking
the local 3× 3 neighborhood around p of respectively M

(r1)
klmn and

X
(r1)
klmn (after PM). z is the hidden multiplier of the GSM model

[8]. Analogous equations hold for M
(i1)
klmn, M

(r2)
klmn, M

(i2)
klmn and

X
(i1)
klmn, X

(r2)
klmn, X

(i2)
klmn . When modeling Xklmn using a Gaussian

Scale Mixture, Ez,Mklmn
[E [Xklmn|Mklmn, z]] is precisely the

BLS-GSM estimator derived in [8].

III-B. Directionally adaptive estimation of the LHLL and
HLLL subbands

To extend step 2) in Table I, we model the edge direction q using
a hidden variable. Let Yklmn =(Y

(1)
LHLL Y

(1)
HLLL Y

(4)
LHLL Y

(4)
HLLL)

T

be a vector with wavelet coefficients of the luminance data to
be estimated and let Mklmn =(M

(r1)
LHLL M

(i1)
HLLL)

T be wavelet
coefficients of the observed CFA image. Then, the equations in
Table I can be written in matrix-form, as follows:

Yklmn = (P⊗A(q))Mklmn

= (P⊗A(q))Xklmn + (P⊗A(q))Wklmn, with

A(q) =

(
q sGLHLL −q sGHLLL

−(1− q) sGLHLL (1− q) sGHLLL

)

where ’⊗’ is the Kronecker product. For the assumed signal+noise
model (3), this gives:

Yklmn = (P⊗A(q))Xklmn
︸ ︷︷ ︸

X̃klmn (signal)

+ σ2
0 (P⊗A(q))Wklmn
︸ ︷︷ ︸

(noise)

Now, we wish to reconstruct the signal X̃klmn, the PM’ed and
demosaiced version of Xklmn. The BLS estimate is given by:
ˆ̃
Xklmn = E

[

X̃klmn|Yklmn

]

,

= Eq|Yklmn

[

E
[

X̃klmn|Yklmn, q
]]

= Eq|Yklmn

[

Ez|q,Yklmn

[

E
[

X̃klmn|Yklmn, z, q
]]]

.

Again, Ez|q,Yklmn

[

E
[

X̃klmn|Yklmn, z, q
]]

is the BLS-GSM
estimator (but here conditioned on q). Practically, three BLS-
GSM estimates are evaluated according to q = 0, 1/2, 1, and
subsequently a weighted mean is calculated based on the weights
p (q|Yklmn) (the posterior probability that a given edge direction
q is observed, given the observed vector Yklmn). The weights
p (q|Yklmn) can further be calculated as outlined in [9]. The
main idea is to characterize YLHLL|q = 0 by having a large L1

norm (assuming that a vertical edge causes wavelet coefficients
with a large magnitude in the LHLL band), while correspondingly
YHLLL|q = 0 will cause a small L1 norm (and vice versa for
YLHLL|q = 1 and YHLLL|q = 1). In the absence of edges
(q = 1/2), we should have YLHLL = YHLLL. We therefore
choose:

bmin = min (‖YHLLL‖ , ‖YLHLL‖) and

bmax = max (‖YHLLL‖ , ‖YLHLL‖) , then:

Table II. Locally adaptive complex wavelet joint denoising and
demosaicing rules.

1) Luminance information (non-LHLL/HLLL/LLLL subbands):

R̂klmn = Ĝklmn = B̂klmn = X̂klmn = E [Xklmn|Mklmn] ,

where mn = LH, HL, HH, k = H,L, l = H,L

R̂HHLL = ĜHHLL = B̂HHLL = 0

2) Directionally adaptive reconst. of high frequency luminance information

(LHLL and HLLL subbands):
ˆ̃
Xklmn = Eq|Yklmn

[

Ez|q,Yklmn

[

E
[

X̃klmn|Yklmn, z, q
]]]

where

Yklmn =

(

q sGLHLL −q sGHLLL

−(1 − q) sGLHLL (1 − q) sGHLLL

)

Mklmn

3) Combined luminance and chrominance (LLLL subband):
ˆ̃
XLLLL = Eq|YLLLL

[

Ez|q,YLLLL

[

E
[

X̃LLLL|YLLLL, z, q
]]]

where

YLLLL =

(

1 0 0 −sHHLL

1 2(1 − q)sLHLL,r 2q sHLLL,r 2sRHHLL
1 2(1 − q)sLHLL,b 2q sHLLL,b 2sHHLL,b

)

MLLLL

q =







1/2 ‖YLHLL‖
bmax

< log 14
5
− ‖YHLLL‖

bmin

and
‖YHLLL‖

bmax
< log 14

5
− ‖YLHLL‖

bmin

1 ‖YLHLL‖ < ‖YHLLL‖

0 else

where the constant 14
5

is chosen to minimize the reconstruction er-
ror (see [9]). Based on these findings, the probabilities p (q|Yklmn)
can directly be calculated (the details are omitted here because of
space limitations). Finally, the procedure is repeated for third and
fourth trees (i.e., for Yklmn =(Y

(3)
LHLL Y

(3)
HLLL Y

(4)
LHLL Y

(4)
HLLL)

T

and Mklmn =(M
(r2)
LHLL M

(i2)
HLLL)

T .

III-C. Estimation of the LLLL-subband

Let Yklmn = (G(r1)
LLLL R

(r1)
LLLL B

(r1)
LLLL G

(i1)
LLLL R

(i1)
LLLL

B
(i1)
LLLL)

T and let Mklmn = (M (1)
LLLL M

(1)
HLLL M

(1)
LHLL M

(1)
HLLL

M
(4)
LLLL M

(4)
HLLL M

(4)
LHLL M

(4)
HLLL)

T , then according to Table I
and (5) we find:

Yklmn =
(
P⊗A

′(q)
)
Mklmn with

A
′(q) =





1 0 0 −sHHLL

1 2(1− q)sLHLL,r 2q sHLLL,r 2sRHHLL

1 2(1− q)sLHLL,b 2q sHLLL,b 2sHHLL,b



 (7)

The estimation procedure is then entirely analogous to Subsection
III-B, the only difference is that the grouping of the wavelet
coefficients into vectors is different, as well as the transform matrix
(in this case A′(q)). As in Subsection III-B, the same procedure is
then also repeated for the third and fourth tree.

IV. RESULTS AND DISCUSSION

To validate the performance of the proposed method, we cor-
rupted the kodim04 image of the Kodak image database with
white Gaussian noise with standard deviation σ = 10. We sub-
sampled the image according to Bayer pattern from Figure 2,
and we reconstructed the image using both the complex wavelet
demosaicing (without denoising) and the proposed approach (with
denoising). The results are shown in Figure 3, where we com-
pare to the sequential approaches denoising-post-demosaicing and
demosaicing-post-denoising. Even though the proposed approach is
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Noisy Den [8]+Demos [9] Demos [9]+den [8]
(28.14dB) (30.39dB) (30.66dB)

[16]+DLMMSE [17] Proposed Original
(31.89dB) (32.65dB)

Fig. 3. Joint denoising and demosaicing (artificially added noise σ = 10).

(a) Demosaiced [9] (b) Proposed

Fig. 4. Results for RAW digital camera data.

a joint demosaicing and denoising method, the noise is removed
well, while many image details (e.g., the eyelashes) are slightly
sharper than in [16]+DLMMSE [17].

Finally, we also integrated the proposed method in a digital
camera reconstruction algorithm for RAW images, that works on
a GPU using CUDA. A RAW digital camera image (of Darling
Harbour in Sydney) was captured using a Panasonic DMC-FZ38,
with ISO: 80, shutter speed 1/250s and resolution 3016 × 4016
(12 megapixels). Cropped versions of the results are shown in
Figure 4. Here, the proposed method suppresses the noise well,
while preserving edges and other fine structures. The complete
reconstruction of the 12 megapixel image took 3.5 s (NVidia
Geforce GTX 560Ti).

V. CONCLUSION

In this paper, we have presented a new joint demosaicing and
denoising scheme that is tailored to the complex wavelet packet
transform and that fully exploits the properties of the complex
wavelets (e.g., approximate shift-invariance, directional selectivity).
The scheme is based on a Bayesian Least Squares estimate for
a GSM prior, involving two hidden variables: the hidden GSM

multiplier, as well as the local edge direction. Experimental results
demonstrate that the proposed approach is well suited to remove
noise during demosaicing, while image details are being preserved.
The proposed scheme is especially promising because of its low
computational requirements (especially on a recent GPU), so that
very large images can be reconstructed in less than 4 seconds. To
simplify the analysis, stationary noise was assumed in this paper.
Nevertheless, the noise model can easily be extended to signal-
dependent noise (e.g., to better deal with low-light scenarios), using
modeling techniques such as the one proposed in [11], [18]. This
will be a topic of our future work.
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