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ABSTRACT

In this paper, we first briefly review the directional profestof the Dual-Tree complex wavelet transform and we invest
gate how the directional selectivity of the transform carnoeeased (i.e., to obtain more than 6 orientations pee¥céb

this end, we describe a new augmented Lagrangian optimizatjorithm to jointly perform the 2D spectral factorizati

of a set of 2D directional filters, with a high numerical acy. We demonstrate how this approach can be used to design
compactly supported shearlet frames that are tight. Firaihumber of experimental results are given to show thetmeri

of the resulting shearlet frames.
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1. INTRODUCTION

The success of recent image restoration and reconstrietitbniques highly relies on the fact that images are sparae i
certain basis. This basis is then closely related to featobserved in these images (e.g., points, lines, curvesyrésy.
Finding good representations (bases or frames) for genkrsdes of images (e.g., photographic images) is however a
difficult problem. Sparsifying transforms focus on exglugtlow-level information in the images (e.g. correlati@tween
intensities of neighboring pixels). An important class passifying transforms are the multiresolution transformbiich
represent the image in a natural way by successively additadl éhformation in subsequent refinement steps. The quest
for good sparsifying transforms has led to the developmesteerable pyramidsdual-tree complex wavelefs2-D (log)
Gabor transform$;* contourlets; ridgelets’: ” wedgelet$ bandelets, brushletsi® curveletst! phaselets? directionlets?

and surfacelet¥?

Despite the large number of available x-let transformggtie still room left for further improvement: today’s appli
cations require processing of 3D (or even 4D) datasets iasoreble amount of time. Several transforms that have been
developed in 2D do not scale well to higher dimensions bexafithe large computational requirements or the excessive
amount of memory needed to store each individual directisumaband.

Shearlet® 18 are a relatively novel sibling in the family of multidirestial and multiresolution representations and
have the main advantage of allowing a very fine directionalysis with an arbitrary number of directions per scale .
Furthermore, shearlets are well suited for representing defined on a Cartesian grid. In particular, the latter spen
number of possibilities to reduce the redundancy of thesfaam 17 18 Although “traditional” shearlets are bandlimited and
hence most efficiently implemented using fast Fourier fiamnss (FFTs), recently compactly supported shearlet syste
have been propos&d?®as an alternative. These compactly supported systems earefficiently be implemented using
several finite impulse response filters. Despite the regutthearlets having nice directional properties and effficreple-
mentations are possible using digital shearing and the DWéTresulting frame bounds were estimated to be ratherigh.
Frame bounds are important indicators of numerical stgtofi the transform inversion: when a transform coefficient i
slightly modified, they determine the corresponding retroicsion error. Tight frames (i.e., with equal frame bounais
snhug frames (with frame bound ratio close to 1) are highlyrddsn practical applications such as image reconstroctio
and image restoration.
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In this paper, we analyze the properties of the dual-treepbexwavelet transform (DT-CWT) in Section 2, which has
equal frame bounds and provides a directional analysis me@iations (in 2D) and is computationally efficient duetie t
use of separable filters. We investigate whether it is ptessibdesign a compactly supported tight shearlet framecbase
insights brought by the DT-CWT. Based on a novel augmentegldragian filter optimization method (see Section 3), we
find that it is possible to design tight frames of compactiymsurted shearlets. In Section 4, we illustrate the propedf
the transform in image approximation and denoising apiitina. Finally, Section 5 concludes this paper.

2. OVERVIEW OF THE DT-CWT AND IMPROVING ITSDIRECTIONAL SELECTIVITY

The dual-tree complex wavelet transform (DT-C\&Tis directly related to the DWT and also provides a multiratioh
analysis (MRA)?? In contrast to the DWT, the DT-CWT uses complex-valued wetgeinstead of real-valued wavelets.
When additionally the wavelets fulfill the so-called Hilb&ransform pair property (see further), the transform akso

be designed in such a way that it performswalti-directional analysis (which practically means that features that have a
dominant direction, such as edges in images, can be moreamitypepresented). This is beneficial for analyzing higher
dimensional data. In this Section, we give a brief explamatf how the DT-CWT achieves its directionality properties
and how the directionality can be further improved (e.g.rmréasing the number of orientations).

2.1 One-dimensional complex wavelets

The complex wavelets of the DT-CWT obey a special prop€ttyre imaginary part of the wavelet is the Hilbert transform
of the real-part:

We(t) = g(t) +127{W} (b). @)
wherei is the imaginary unit. Here, the Hilbert transformypft) is defined a7’ {¢} (t) = %rff;" f’f(tgdr or, in the Fourier
domainj?@}(w) = H(w){ (w) with:

—i, w>0
Hw)={0, w=0
i, w<0
Based on (1), it can easily been shown tigtt) is analytic {U¢(t) is only supported on positive frequencies¥$ 0)), such
that the magnitude of the resulting complex wavelet coeffits is shift-invariant. In Figure 1, an example of a complex

wavelet is shown. It can be seen that the complex waveletlislooalized in time and that its magnitude is similar to a
bump function.

By projecting a real-valued functiof(t) onto the complex-valued wavelet functions:

anlt) = e (57 ) @

complex wavelet coefficiem(sf, t,ua,b> are obtained, from which the magnitude and phase can bg easilputed: a large
magnitude then reveals the presence of a singularity (dge,déexture, point, ...), while the phase indicates théiposof
the singularity within the support of the complex wavelfet.

In practice, computing the inner products one by one is radlmv, therefore discrete implementations of the DT-
CWT transform make use of the fast DWT decomposition schesee Ref3): two fast DWTs are applied in parallel,
one DWT for the real part of the complex wavelet, a second DWfTife imaginary part. Because there are two wavelet
decomposition trees, the transform is calleddbal-tree complex wavelet transform.

*We remark that (1) is not the only way to construct complexelets. More general complex wavelefig(t) are investigated e.g.
by Belzer et aP4 and Lina and Mayrarf® , however, these wavelets are not analytic.
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Figure 1. A complex wavelape(t), together with its real and imaginary parts.

2.2 Two-dimensional complex wavelets

As in the real-valued DWT, higher-dimensional waveletscamstructed as a tensor-product of one-dimensional wa/Sle
Let us consider a pair of complex wavelggx(t) = yx(t) +i.72 {yx} (t) andiicy(t) = Yy (t) +i72 {yy} (t) with Fourier
transformsfic x (w) = (14 iH(w)) Pk (w) and Py (w) = (14 iH(w)) Py (w), respectively. The Fourier transform of the
corresponding complex wavelet is:

lT’c,l(‘*% wy) = ‘-//-\’c,x (o) ‘-//-\’c,Y(wS’)
= P (@) Py (wy) (1-H (w)H (wy)+i (H () +H(w)))
= 4w Py ()Y (@) Y (@), 3)

with Y (w) the Heaviside step function. From (3) it can be seen fhat(w, wy) only passes positive horizontal and
vertical frequencies, hend. 1 (w, wy) is supported on the first quadrant of the 2D frequency plahe. Shme way, it is
possible to design complex wavelets that pass frequenciether quadrants of the frequency plane, by using conjsgate
of the one-dimensional complex wavelets, e.g.:

lT’c,Z((*%wy) = a\’c,x(a&a)a\’c,y(fi&)- 4)

It can be shown that the frequency responsgofix, y) is given by 2 (aw, wy) = 4f(wx) Py(wy,)Y (—aw)Y (wy), which
is supported in the second quadrant of the frequency plagedudi < 0 andw, > 0). A frequency domain illustration is
given in Figure 2.

Now, if we look at the frequency response of the real part arainary part of the 2D complex wavelets, i.e.:

Pek(ox, wy) = Prex(ox, wy) +iPm(ax, @), k=1,2 (5)

then we find that, by the conjugate symmetry property of therieo transform, both parts have the same magnitude
response:

|Bre 1 (o, )| = | Bima (o, wy)| = 2| Px(ax)| | Dy(ay)| (Y (@)Y (@) +Y (—ax) Y (—awy))
| Brea(wx )| = [Bima(wx, @y)| = 2|Tx(w0)] | By(y)| (Y (w0 Y (@) +Y ()Y (— ) (6)

where the last factor consisting of the Heaviside functemiects two quadrants of the Fourier space (see Figurg@(d)-
Hence, by using a pair of complex waveletB x(w), Wey(wy) and their conjugateWe x(awx), Wey(wy) , followed by
taking the real parts of the resulting complex wavelet coieffits, we obtain two orientation bands with angle$5°.
This elegantly solves the directionality problem of theazaple DWT, that cannot distinguish between orientatiayiem
+45° and—45°. When wavelet filters are used together with scaling filtara multiresolution approach, an analysis is
possible in 6 orientation angles (in 2D) instead of 3. Alsmaekable is that the real or imaginary parts of the complex
wavelets areon-separable. However, due to the tensor-product, the DT-C@ATstill be implemented efficiently based
on separablewavelet filters. The next question is whether the directisabectivity of the complex wavelets can be further
increased while retaining a tight frame representationivial solution is by making use of complex wavelet packetdui
transforms, which can have arbitrary numbers of orientatidHowever, due to the separability of the complex wavelets
(3), the equi-energy contours of the complex wavelet fragyeesponses have a rectangular shape rather than a wedge-
like shape. Wedge-like shapes are desired in practiceubethey permit parabolic scalifffor arbitrary orientations. A
design of compactly supported shearlets can thus offengigolhere.
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Figure 2. lllustration of how directional selectivity ofalcomplex wavelets is achieved. Different gray-shadesatdithe frequency
spectra of different complex wavelets: @x (ax) and@ic x (—ax), (b) Py (wy) andPcy (—wy), (c) The resulting 2D complex wavelets
P k(ax, wy) obtained as tensor products of 1D complex wavelets, (d)uemecy support offre 1(wy, wy) (Or Wim1(wx, wy)), (€) Fre-
quency support ofre 2( Wk, wy) (OF Yim2(wk, wy))-

3. DESIGN OF A PARSEVAL FRAME OF COMPACTLY SUPPORTED SHEARLETS
3.1 Overview of the shearlet transform

The shearlet transform is a generalization of the wavedetsfiorm with basis functions well localized $pace, frequency
andorientation. Let ;x| (x) denote the shearlet basis functions (or in the remaindeplgioalled shearlets), then the
shearlet coefficients of an imadéx) € L? (R?) are given by?/:28

Wikt = (f,Wjk1) = /]R , f(X)@j k1 (X)dX, (7)

wherej € Z, k € Z and| € Z? denote the scale, orientation and the spatial locatiopewively. The shearlet transform
combines geometry and multiscale analy$ishearlets are formed by dilating, shearing and translatimpther shearlet
functiony € L? (R?):

Wiki(x) = [detA 2y (B*AIX 1), (8)
whereA andB are invertible 2< 2 matrices, with deB = 1 and WherqdetA|V2 is a normalization factor (such that
|Wixi|| = l@l). The shearlet functions are subjected to a compositeatilat! and geometric transformatidt, e.g.,

4 0 11
A<02> and B<Ol>' (9)

Here,A is an anisotropic scaling matrix (in thedirection, the scaling is twice the scaling in tii@irection) andB is
a geometric shear matrix. The shearlet mother functionfisel@ in the Fourier transform domain as the product of the
Fourier transform of a wavelet; («w)) and a compactly supported bump functidbp(wy) ) satisfyingWz(wy) # 0 <

wy € [—1,1]:
W03 63) = W1 () Wy <%) (10)

Consequently, the mother shearlet function is bandlinmiftedhourglass-shaped region of the 2D frequency spectrum:
W(w) # 0wy <. (11)

In practical implementations, the frequency plane is Ugsalit into two cones (for the high frequency band) and aasqu
at the origin (for the low frequency band):

G = {(wow)eR?[|a > an, |wy| < |wl},
C = {(ww)eR?|ay|>an, @y > |wl},
Cs = {(wnw)eR?|wx <, |w|<a}.



with ay the maximal frequency of the center squ&se This enables treating the horizontal and vertical fregigsin
images equally, e.g. using the following dilation and sheatrices in both cones:

AL = (g g),Bl:(é i) (coneC;) and Azz(g 2),82:(1 (1)) (coneCy). (12)

Consequently, the horizontal cone is dilated horizontaylfactor 4 per scale, while the vertical cone is dilatedizalty
by factor 4. In the following, we make the distinction betwdmoth cones explicit by assigning different shearlet basis
functions to each cong= 1, 2:

¢y () = [detAq| @ (BEALX 1), (13)

whereg/® (x,y) = ¢(x,y) andy@ (x,y) = (y.x).
The shearlet transform based on the band-limited Meyer leawan efficiently be implemented in the DFT dom&in’
and with a limited redundancy factor ranging frond@ to 532 in 2D and 3 to 7 in 3D, depending on the overlap of the

bump functions¥>(wy, + k), k € Z. In contrast to (9), an isotropic scaling matrix, eAy.+= 20 ) can also be used,

0 2
this leads to directional shearlet transforms with the saumber of orientations per scale.

3.2 A split-augmented Lagrangian algorithm

In Section 3.1, shearlets are defined in Fourier space asddeqt of the Fourier transform of a 1D wavel8t;((«y)) and

a compactly supported bump functiofl{(w,/w)). Instead of adopting a frequency domain-based desighéostiearlet
basis functions, we will define the shearlet filters direailyhe spatial domain. The support.6f—*W; («) can be made
compact, simply by selecting a compactly supported wayeleth as the Daubechies’ wavelets. The remaining problem
is controlling the spatial support cﬁ!’*lwz(a&/a&). Our goal is therefore designing directional finite impulssponse
(FIR) filters for. 7 ~1W, (e + kax) /ax) , K€ Z.

As a starting point, we simply truncate the impulse respofiséW, ((w, + kax) /ax) to a support that is smaller than
some given upper bourld whereL > 1 (i.e. we set filter coefficients outside this support to zeRemark that simply
truncating the impulse response does not guarantee peefaaristruction of the corresponding transform, so exepsst
are needed.

In the following, we present a numerical optimization teicjue that can be used to recover the perfect reconstruction

and that simultaneously leads to a synthesis which is theiradpf the analysis (giving us a Parseval frame). Bgt
denote a vector of length?, that is obtained by column-stacking the truncated impusponse of the analysis filter
F W, ((wy +kax) /ax). Furthermore, leF; denote a discrete 1D DFT matrix of sitex L. Then the 2D Fourier
transform matrix of siz&? x L? can expressed as the Kronecker product of two 1D DFT matffiees F1 ®F1). Similarly,
Py is the synthesis filter correspondingﬁ*lwz((awka&)/a&). Using this notation, 2D operations on the impulse
responses are translated to matrix operations on 1D vedioirder to build a tight frame of shearlets, we require that
FoPy is the complex conjugate 65Py, i.e. P, = FE'F2Py. Due to the properties of the DFT and the column-stackedrorde
for the elements Py, this is equivalent to stating thBY is simply the reverse of the vectBx.

To obtain perfect reconstruction, the sum of the squarechihades of the filter responses in the DFT domain should

have sum 1:
K

K
z FoPy - FoPy = Z |F2Pk|2 =12, (perfectreconstruction) (14)
K=1 K=1
wherel, 2, is a vector of length.? that consists of ones and wheris the Schur product (or element-wise product) of
two vectors. Here|;| denotes the element-wise modulus of a complex-valued recto

Let PO be the truncated impulse response®f *W; ((w, + kax) /ax) (which we will call prototype filters in the
remainder). Again, th&? values of the impulse response are re-ordered into a vettength L2. T is a diagonal
projection matrix with diagonal elements 0 and 1 that prisj€ (or Py) onto a filter with the desired truncated support
that is at least twickas small ag x L. Then our goal is to find filterB, such that 1) perfect reconstruction (equation (14))

TThis is to avoid periodization effects (i.e., the circulaneolution) caused by DFT-based filtering.



holds and 2) the following conditions are fulfilled:

P« ~ PO (approximation for the truncated prototype filters)

(I-MPk = 0 (compact support)
This leads us to the following constrained optimizationtypem:
K 0) 2 K )
i rp fPH LY [FPaPP=1 d(I —TF)Pc=0 15
i 3 TP =R st 3 P = 102,0 and (1 -1y (15)

2
(0)‘ are known, the above problem

Based on the fact that the squared magnitude responses pfdtotype filters’ FoPy
could be solved by 1) designing the squared magnitude reequF}szF and 2) obtaining=2Px using a 2D spectral
factorization method fronthPk|2. Although several 2D spectral factorization methods é%i&t based on 1D spectral
factorization combined with helix filtering, we have notéat this approaches usually work well when the support of the
filters Py is sufficiently small (e.g. smaller thand5). When calculating solutions for larger support size, bagto deal
with numerical stability issues due to the limited floatirgjrd precision.

Instead, we solve the above joint spectral factorizatiabfgm using direct numerical methods. First, we note that
the condition(l — M) Py is redundant as long as the initial solutiBgis truncated (e.gPx = I'Py). This is due to the fact

2 2
thatHFPf(O) — PkH = HFP&O) — FPkH , from which it can be noted that non-zero valks- ') P do not contribute to the
objective function. We can simplify the above problem to:

) K 0 2 K 2
Pk’k@l,r‘]“,K k;HFPf( ) _ PkH s.t. k;|F2Pk| =12, (16)
Because the cost function is in a quadratic form, minimiraimounts to a linear system of equations that can be solved
using sparse solvers. This leads to the tedious computatiararge sparse system matrix and depending on the solver
being used, numerical stability issues may arise. A simplenerical algorithm to solve (16) can be obtained using the
split-augmented Lagrangian method. This involves intodaly splitting variablesky = F,Py, leading to the following
Lagrange function:

K (0) 2 p& iy 2 ST (e VIS 2
k;”rpk —Ry +5 3 PSR PP+ 3 AL (R PO+ 5 ( 3 R - Lo (17)

Here, the second term is a penalization term with wejght 0. A andv are Lagrange multipliers fdf Ry = Py and
ZE:1|R|(|2 = 1,2,4, respectively. In (17), we divided both and v by 2 because this factor is then eliminated when
computing the derivative of the Lagrange function. Obviguthis does not affect the solution of the problem in anysgen
By differentiating and equating to zero, it can be verifieat e solution of this Lagrangian optimization problenosrid

by Algorithm 1.

Algorithm 1 Split-augmented Lagrangian method for the joint specti@hfrization of a set of squared frequency responses
|F2Pk|2, k=1,...,K. ¢is a sufficiently small number, e.g.= 10-1C.

Initialization P, = P\, Ry = FoP, Ak =0, p =1, £ = 1010

do
PO + urFY R+ Ay
=% k k=1,..,K (update step 1) (18)
14 p
(RO |(F2Pi)m| - k=1,...,K, m=1,..L2 (update step2) (19)
Sh—1|(F2Pi )
Ak« A+ (FERc—P) k=1,...,K (update step 3) (20)

repeat until 3K [|F5Rq— Pk||2 <e&




This algorithm allows for an intuitive interpretation:

1. Update step 1: we start froRy (DFT domain) and go to the spatial domak}Ry). We truncate the support of the

filter, and average the result with the truncated impulsparse of the prototype fiItd’rPl((o). Next, we add a small
correctionA/(1+ p). By applying update step iteratively, we can interpret th@plas a recursive filter (that lets

the result converge to a result that well approximates theoprpe filters Pl((o)).

2. Update step 2: we transform the result from update stepck tuathe DFT domain, and we discard the phase
information of the DFT coefficients (by calculating the magde). Next, we normalize the resulting frequency
responses such that they sum up to 1 and such that PR is enByréidcarding the phase information, we force the
filter impulse responses to be localized around the origimiclvsubsequently minimizes the potential energy lost by
the projectior Py.

3. Update step 3: by update steps 1 an&Ris no longer equal té,P,. The variableA « keeps track of the current
residual error betweelﬁ'z4 Rk andPy (update step 3). This step generally improves the conveegeithe method.

4. The whole procedure is iterated until the error betweercthrent solutionPy andF? Ry is sufficiently small.
The compactly supported shearlet transform can then besimgatted as in Figure 3:

1. Apply the horizontal directional filte3,, k=1, ...,K/2 to the image.

2. Apply the vertical directional filterBy, k = K/2,...,K to the image.

3. Apply a 1D horizontal DT-CWT o scales to the horizontally filtered image.
4. Apply a 1D vertical DT-CWT ofl scales to the vertically filtered image.

The inverse transform can be computed by reversing the€iffsteps. In this scheme, the resulting shearlet basitifuns
are complex-valued. The representation is a Parseval fia@cause each step of the analysis algorithm preservagyener

4. EXPERIMENTAL RESULTSAND DISCUSSION

Algorithm 1 allows to compute many directional filters witklatively large support (e.g. 2616) based on some com-
putationally simple update steps: the Fourier matrix rplitiationsF5 andF, can all be implemented efficiently using
FFTs. Although the computation of the filters only has to bdqrened once, we found it interesting to investigate the
number of iterations required to reach convergence. InrEigyuwe show the absolute reconstruction error (measured as

Input image / \ /
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Horizontal directional Horizontal CW analysis Horizontal CW synthesis Horizontal directional

filters filters <+

W4 W4
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TN 71T
Vertical directional filters  Vertical CW analysis Vertical CW synthesis Vertical directional filters

Figure 3. Implementation of our proposed compactly suggbshearlet transform (CW=complex wavelet).
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Figure 4. Convergence of the augmented Lagrangian algofibh different number of orientations (K).

zr';,zzl )zle |Rk,m|2 - 1)) as function of the iteration index. Here, we use compaetr§lof support size & 6 andL = 24.

When considering eight or more orientations, we find thatveogence is reached in about 3000 iterations. ket 4,
the convergence takes significantly longer (about 1700atitns). Nevertheless, in Matlab this procedure takesngdr
than a few seconds (up to one minute Ko« 4). The absolute errors (around ) correspond to a reconstruction PSNR
of around 300dB, which is due to the limited floating pointgsen. Also for other support sizes and other valuek of
andK we obtained perfect reconstruction (up to floating pointisien).

In Figure 5, the resulting shearlet basis functions areadegpifork = 12 andK = 24. It can be noted that the compact
shearlets resemble tiny edges and that they lack the lohaoftdie bandlimited shearlets or curvelets. It is apparbkat t
the basis functions are sheared versions of each othemughicording to the shearlet definition (Section 3.1). T
functions have an excellent spatial localization and dioeal selectivity, which is beneficial for practical apgtions.

To investigate the advantages of the compact support ofttearkets, we first perform a simple experiment using a
grayscale line drawing of a rose (Figure 6(a)). Due to theeiike discontinuities in this image, traditional transhs
based on wavelets often have problems approximating thed@kimages: typically many non-zero transform coeffitéen
are needed to approximate the edge. In this experiment, wigznthe line drawing using different multiresolution
transforms. We use only one single scale of the transforchyanselect the 1% most significant coefficients (other non-
significant coefficients as well as the scaling coefficiemésset to zero). The 1% most significant coefficients are then
further quantized to -1 and +1. Next, the image is reconstrlasing the inverse transform and the intensity range is

Magnitude response of the real part

Real part

Imaginary part

(b)

(d) (e)

Figure 5. Compactly supported shearlet basis functiondtegidcorresponding magnitude responses: (a)-(c) 12 tatiens, (d)-(f) 24
orientations. For (c) and (f), the origin of frequency spisdae the center of the image (in between the two blobs). Ther@@nventions
are as follows: (top row) gray corresponds to zero, whitedsitive values and gray to negative values. (bottom rowpwel large
positive magnitude, red: small positive magnitude, blaekn.



(a) Original (b) DWT - (d) Curveletd (e) Bandlim. (f) Compactly
line drawing Daub?? (1%) (1%) shearleld (1%) supp. shearlets (1%)

Figure 6. Approximation of the line drawing of a rose, usingeicoefficients with 3 possible values (-1, 0 and 1). Eretbn
parentheses is the relative number of x-let coefficientsatenon-zero after processing.

rescaled to the range 0-255. The results are shown in Fighye®. It is clear that the DWT (Figure 6(b)) is not well &bl

to approximate edges that are not horizontal or verticak dirvelet$ (Figure 6(c)) and bandlimited shearlets introduce
ringing in the reconstructed image, which is here amplifigdh® quantization to -1 and +1. It is remarkable that the
compact shearlet transform (wikh= 8 orientations) is well able to reconstruct the curves ofdtiginal drawing. One
can argue that this is due to the high redundancy of our sclierf@etor 8), while other transforms such as curvelets and
shearlets have a slightly lower redundancy (about 7 andepéctively). Nevertheless, the number of retained coeffisi

in Figure 6(f) was 20972, which is smaller than the originaimer of non-zero pixels (26502).

As this experiment suggests that our compactly supportedrktis are well able to approximate and localize small
curve-discontinuities in images, we apply the differeansforms to a charcoal drawing (see Figure 7), and we use the
same procedure as above. Here, both the compactly supsbeadets from Kittipoom et aP as well as our method give
a good result. Using our compact shearlet design (see Fit{dj® the delineation of the contours appears to be slightl
better.

Next, we compare the different transforms in an image démpapplication. We added artificial white Gaussian noise
with standard deviation 25 to the line drawing from Figura)7{Then, we use the BLS-GSM method from Portilla et'al.
to remove noise from the images. We then compare the deggisirformance for different multiresolution transforms,
each using the same number of scales. Visual results ameigitégure 8. First, we remark this in this type of comparison
the PSNR metric is actually not very useful, because thisioistnot well able to capture ringing artifacts in image®rél
we provide PSNR values to illustrate that the transformsdttgn the same range of performance. Nevertheless, \Wsual
it can be noted that the curvelets and bandlimited shearétse a lot of ringing and cross-over artifacts. The cregs-o
artifacts appear due to the fact that long-tailed basistfans can not approximate well corner structures in imagtser
transform coefficients are needed to compensate this, warielsuppressed to much by to the denoising. As a result,
line-structures appear that extend existing structurésdiimage. Using the compactly supported shearlets, thes-areer
artifacts as well as the Gibbs-type ringing can be avoideangared to the compactly supported separable shearlats fro
Kittipoom et all® (Figure 8(e)), our denoised image in (Figure 8(f)) appekgbtly sharper. This might be caused by the
improved frame bounds. For other test images (e.g. lenbabayr...), the denoising performance is similar.

Finally, we remark that there are many extensions possiblbe shearlet design procedure from Section 3. First, it
is easy to impose symmetry relationships (such as the fattltle ‘horizontal’ shearlets are 90°-rotated versionsef t
‘vertical’ shearlets). Next, due to the flexibility in defirg the cost function (17), it is possible to include decimati
operations in the optimization: in the current design, #ebundancy factor of the transform is proportional to the hem
of analysis orientationk&. By including decimations, the redundancy can further lgeiced, in a similar way as we did

*Here, we used the wrapping based curvelet implementation €andés et df*



(a) Original charcoal (b) Bandlimited (c) Separable
drawing shearletd (10%) shearlet$ (10%)

(d) Compactly supp. (e) Compactly supp. (f) Compactly supp.

shearlets (10%) shearlets (1%) shearlets (0.5%)
Figure 7. Obtaining a sketch from a charcoal drawing: coisparof different multiresolution transforms. Enclosecbarentheses is
the relative number of x-let coefficients that are non-zéter @rocessing. Original charcoal drawing: Liliane GaassDally, 2012.

for bandlimited shearlets in Réf. Our current results are encouraging: we are already ablertstict a near-Parseval
frame, with basis functions with good directional propestiexact details will be published elsewhere). Anothesresibn

is to define the shearlets in a separable way, similar togittin et al1® but in such a way that the separable supports
are sheared versions of each other. This would be very uieftie processing of higher dimensional data (3D, 4D, ...),
because the resulting algorithms are then based on sepéitening, yielding a computational performance that isitar

to the DWT or the DT-CWT.

5. CONCLUSION

To tackle the design problem of tight shearlet frames witmpactly supported basis functions, we first reviewed how
directional selectivity is obtained using the Dual-Treengdex wavelet transform (DT-CWT), which possesses many of
the desired properties (tight frame, basis functions watmpact support). One disadvantage is that the DT-CWT does no
enable wedge-like analysis filters in the frequency doméiin arbitrary number of orientations. Therefore, we introed

an augmented split-Lagrangian algorithm, that allows utopute compactly supported shearlet filters with an iteat
algorithm requiring relatively simple computational sepExperimental results reveal that the resulting shebadsts
functions resemble tiny edges and that these functions antéciplarly interesting for analyzing and synthesizingeli
drawings (even though they can still be used for the widesatdiphotographic images). We showed an example where
we successfully extracted a pencil sketch from charcoalidiga Finally, due to the flexibility of the design method, mya
future extensions become possible, such as decimatiomssh#®r reducing the redundancy of the transform, as filjerin
schemes based on separable filters to decrease the comiptitat.
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Figure 8. Image denoising experiment using BLS-GSM ancdfit multiresolution transforms. Images are cropped ifralization
purposes. Original charcoal drawing: Liliane Goossé@uily, 2012.
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