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Abstract—Reconstruction of inhomogeneous dielectric objects
from microwave scattering is a nonlinear and ill-posed inverse
problem. In this paper, we develop a new class of weakly convex
discontinuity adaptive (WCDA) models as a regularization for
quantitative microwave tomography. We show that this class
includes the Huber regularizer and we show how to combine
these methods with electromagnetic solvers operating on the
complex permittivity profile. 2D reconstructions of objects from
the Institute Fresnel database and experimental data at a
single frequency demonstrate the effectiveness of the proposed
regularization even when employing far less transmitters and
receivers than available in the database.

Index Terms—Inverse problem, discontinuity adaptive regular-
ization, microwave imaging, electromagnetic scattering.

I. INTRODUCTION

QUANTITATIVE microwave imaging [1] forms images
of internal sections of objects in a noninvasive and

nondestructive way. The images are obtained by processing
the scattered field data after illuminating the objects with
known incident fields. Earlier regularized iterative methods
to solve this nonlinear and ill-posed inverse problem include
[2–10]. Total variation (TV) was applied as a multiplicative
constraint in [4]. Edge preserving regularization was imposed
on the real and imaginary part of the complex permittivity
separately in [5]. Multiplicative Smoothing (MS) [8] tends
to oversmooth the result because the smoothing is imposed
all over the reconstruction domain. Value Picking (VP) [9]
is a non-spatial technique and was shown to be effective
for piecewise constant targets with several distinct permittivity
values. A Markov Random Field (MRF) regularization with
Line Process model was employed in [10]. Other types of
MRF models, aiming at improved edge preservation and
adaptation to discontinuities, so-called discontinuity-adaptive
MRF models [11] have been largely studied in the domain of
image processing applications, but we are not aware of any
reported extensions of these models and their properties in
Microwave Imaging.

In this paper, we design a new class of weakly convex
discontinuity adaptive (WCDA) models as regularization func-
tions, which satisfy the following properties: (i) can be used in
convex optimization in the complex domain; (ii) discontinuity
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adaptive and (iii) with highly sensitive adaptive interaction
function. We define a new method which combines these
models with electromagnetic solvers in quantitative microwave
tomography operating on the complex permittivity profile.
Finally, we devote special attention to ensure a good sensitivity
of the Adaptive Interaction Function (AIF) [11], which makes
our regularization approach not only discontinuity adaptive but
also sensitive to subtle changes in the underlying complex
permittivity profile. Preliminary results for one special case
from the proposed approach (with Huber regularization) and
on simulated data only were reported in [12]. In this paper
we apply the WCDA regularization to three inhomogeneous
targets of the 2D Fresnel database [13] and show reconstruc-
tions obtained from single frequency data and from far less
transmitters and receivers than available in the database.

This paper is organized as follows. Section II introduces the
electromagnetic inverse scattering problem and Gauss-Newton
optimization. The proposed method is presented in Section III
and results from experimental data are shown in Section IV.
Conclusions are formulated in Section V.

II. APPLICATION

Suppose an unknown object with complex permittivity
εεε(r) = ε′(r) + iε′′(r) is embedded in free space εεε0
and is illuminated successively with different known time-
harmonic incident fields (a time dependence e−iωt is as-
sumed). In this paper we adopt a two-dimensional (2D)
configuration. The discretized unknown permittivity profile
εεε = [ε1, · · · , εν , · · · , εNε ] is estimated iteratively, on a grid
with Nε square cells within a reconstruction domain D,
alternating between the forward and the update problem. The
forward problem simulates the scattered electric field (the
total field (with the object in place) minus the incident field
(without the object present)) for a guessed permittivity profile,
using a volume integral equation solver [14]. The scattered
fields escat(εεε) computed in a number of receiving antennas in
the simulation are compared with the measured fields emeas.
Based on the resulting error, the permittivity profile is updated.
Typically, the inverse problem is solved by minimizing a cost
function

F (εεε) = FLS(εεε) + µFD(εεε) (1)

where FLS(εεε) is the least squares data error and FD(εεε) is
a regularization term, with the parameter µ ≥ 0. The least
squares data error is

FLS(εεε) =
‖emeas − escat(εεε)‖2

‖emeas‖2
(2)



2

where emeas and escat(εεε) are Nd-dimensional vectors that
contain the data for all combinations of illuminating and
receiving antennas.

We define the regularization function FD(εεε) as

FD(εεε) =
1

2

∑
ν

∑
ν′∈Nν

gγ(εν − εν′) (3)

where gγ is a potential function with parameter γ and ν′

denotes a spatial position neighboring ν in the neighborhood
system Nν . We use 8 neighbors in 2D as a compromise
between reconstruction quality and complexity.

We consider minimization by an approximate line search
along a Gauss-Newton descent direction, which requires a
positive definite Hessian matrix. The complex permittivity in
iteration k is updated as εεεk+1 = εεεk + βk∆∆∆εεεk, where ∆∆∆εεεk is
obtained from

(JHk Jk + λ2ΣD
k )∆∆∆εεεk = −(JHk [escat(εεεk)− emeas] + λ2ΩD∗

k )
(4)

where (.)H stands for Hermitian transpose and (.)∗ denotes the
complex conjugate, and where βk approximately minimizes
(1) along this direction [15]. The trade-off parameter λ is given
by λ2 = µ‖emeas‖2 [9]. In the following, the subscript k is
omitted. J is the Nd × Nε Jacobian matrix, which contains
the derivatives of the scattered field components with respect
to the optimization variables: Jdν = ∂escatd /∂εν ; ΩΩΩD∗ is a
Nε−dimensional vector that contains the derivatives of the
regularizing function, ΩD∗

ν = ∂FD/∂ε∗ν ; ΣΣΣD is a Nε × Nε

matrix, ΣD
ν,ν′ = ∂2FD/∂εν′∂ε∗ν . The use of the (independent)

variables εν and ε∗ν instead of an equivalent formulation in
terms of ε′ν and ε′′ν [16] is motivated by the more compact
notations it yields for the field expressions. The factor JHJ+
λ2ΣD is known as a Gauss-Newton Hessian matrix and results
from neglecting the second order derivatives ∂2F/∂εν∂εν′ and
∂2F/∂ε∗ν∂ε

∗
ν′ in the complex Hessian matrix [8].

III. PROPOSED WEAKLY CONVEX DISCONTINUITY
ADAPTIVE CLASS OF MODELS

We design a class of regularization functions FD in (3), that
we will call weakly convex discontinuity adaptive (WCDA)
models. Let η denote a complex number, being a difference
between two neighboring complex permittivities: η = εν−εν′ .
The WCDA models need to satisfy the following properties:

(a) Discontinuity-adaptive, such that

lim
|η|→∞

| ∂g
∂|η|

| = lim
|η|→∞

|2ηh(η)| = C (5)

where C ∈ [0,∞) is a constant and h(η) is the AIF. The
above condition with C = 0 entirely prohibits smoothing at
discontinuities where |η| → ∞ whereas with C > 0 allows
limited (bounded) smoothing. In any case, the interaction h(η)
must be small for large |η| and approach 0 as |η| goes to ∞.

(b) Matrix ΣD is positive definite.
(c) Steep slope of AIF around the origin, to make the

function sensitive to subtle changes in the permittivity profile.
The 2D Huber function

gh(η) =

{
|η|2 |η| ≤ γ

2γ|η| − γ2 otherwise
(6)

Fig. 1: The qualitative shapes of gs(η) and gh(η) from WCDA
models, where η = α+ βiη = α+ βiη = α+ βi.

satisfies these properties, so it also belongs to our class of
WCDA models but with C > 0 (bounded smoothing). We can
design similar functions with C = 0 (or with less smoothing
of strong edges).

In particular, we can construct different discontinuity adap-
tive models with the desired properties by combining two well
chosen functions (one in the origin and another one in the
tails) like it is done in the Huber function [11]. In practice,
it is convenient to start from an existing 1D discontinuity
adaptive model that is convex around the origin with a steep
AIF as required in (c) and replace the tails with a well-chosen
function, conforming to (a)-(b). An example of such a function
similar to gh but with C = 0 is

gs(η) =

|η|2 |η| ≤ γ

γln(1 +
|η|2

γ
) otherwise

(7)

Note that the WCDA models and/or their first derivatives
can have discontinuity points (in which case they are not
strongly convex), but they conform with (b) and we show that
these models (like gs) perform well in our optimization.

Knowing that |η|2 = ηη∗, we can express ΩD∗ and ΣΣΣD

from (4) as follows

ΩD∗
ν =

∂FD

∂ε∗ν
=

∑
ν′∈Nν

ων′ . (8)

The diagonal elements of ΣD are

ΣD
ν,ν =

∂2FD

∂εν∂ε∗ν
=

∑
ν′∈Nν

σν′ (9)

and the non-diagonal elements are

ΣD
ν,ν′ =

∂2FD

∂εν′∂ε∗ν
(10)

which are zero except if ν′ ∈ Nν . The expressions for ων′ , σν′

and ΣD
ν,ν′ are derived in TABLE I for the gs and gh functions.
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|εν − εν′ | ≤ Thr otherwise

gs(η) ων′ (εν − εν′ )
γ(εν − εν′ )

γ + |εν − εν′ |2

Thr=γ σν′ 1
γ2

(γ + |εν − εν′ |2)2

ΣD
ν,ν′ −1 −

γ2

(γ + |εν − εν′ |2)2

gh(η) ων′ (εν − εν′ )
γ(εν − εν′ )

|εν − εν′ |

Thr=γ σν′ 1
γ

2|εν − εν′ |

ΣD
ν,ν′ −1 −

γ

2|εν − εν′ |

TABLE I: ων′ , σν′ and ΣD
ν,ν′ for the two proposed WCDA functions.

Fig. 1 illustrates gs and gh in the complex domain, together
with the corresponding |ω| and σ functions. Note that |ω|,
which is an indication of the smoothing strength, increases
monotonically with |η| within the ”smoothing” interval (up to
a threshold). Outside this interval, |ωs| decreases with |η| and
tends to zero as |η| → ∞. In other words, condition (a) with
C = 0 entirely prohibits smoothing at discontinuities where
|η| → ∞ producing sharp edges. gh with C > 0 allows limited
(bounded) smoothing—observe that |ωh| doesn’t become zero
when |η| → ∞. The interaction σ, which performs the role of
h(η) must be small for large |η| and approaches 0 as |η| goes
to ∞.

We optimize the regularization parameter µ and the param-
eter γ in the proposed model experimentally. Here γ = 0.05 is
a good choice. For the regularization parameter µ we obtained
the same optimal value (∼ 1× 10−3) for different targets and
different antenna configurations.

IV. EXPERIMENTAL VALIDATION

We consider a number of targets and antenna configurations
from the 2D Fresnel database [17], for which we use TM-
and TE-polarized scattered field measurements at 4GHz (λ0

= 7.49cm). For each data set, the proposed WCDA regular-
ization with the two potential functions (6) and (7) as well
as Multiplicative Smoothing (MS) [8] and Step-wise relaxed
Value Picking (SRVP) [9] regularization are employed in
independent reconstructions and the results are compared. We
use three quasi-lossless inhomogeneous targets: FoamDielInt,
FoamDielExt and FoamTwinDiel, shown in Fig. 3 and de-
scribed in [17]. The antenna positions are equally spaced on
a circle with radius 1.67 m. The target is positioned in the
center of this circle. For each selected transmitting antenna,
the receiving antenna can be positioned on a 240◦ arc opposite
to it (e.g. from θR = 60◦ to θR = 300◦ for a transmitter at
θT = 0◦). We show reconstructions for which we selected
4 (90◦ spaced) transmitting antennas (9 (40◦ spaced) for
FoamTwinDiel), each with TM and TE polarizations, and 9
(30◦ spaced) receiving antennas, measuring the longitudinal
Ez(θ) (for TM) and azimuthal Eθ(θ) (for TE) fields, resulting
in a total of 72 (162 for FoamTwinDiel) scattered fields or in a
data vector emeas, containing the Ez (for TM) and Ex, Ey (for

Fig. 2: Cross-sections of the reconstructed permittivity from Fig. 3
through the center of the grid for FoamTwindiel.

Reconstruction error (%) FoamDielint FoamDielext FoamTwinDiel
MS 15.35 14.73 18.04
SRVP 11.13 17.00 22.09
WCDA with gs 13.72 12.66 17.11
WCDA with gh 13.61 13.20 17.83

TABLE II: Reconstruction error (%) for the reconstructed permittiv-
ities from Fig. 3 with the different methods.

TE) components, of length Nd = 108 (243 for FoamTwinDiel)
complex numbers1. Note that the reconstructions with various
methods of these targets that are reported in the special
issue [13], are from all the transmitting positions that are
available in the database: 8 transmitters (18 for FoamTwinDiel)
and 241 receiving antennas, yielding data vectors up to a
maximum length of 5784 (13014 for FoamTwinDiel). Smaller
numbers of data may be of interest in terms of computation
and measurement effort. Indeed, our reconstructions from 108
data took around 10 minutes while around 20 hours were
needed when using 5784 data, with the same stopping criterion
FLS = 10−3 or 20 iterations maximum, on a sixcore Intel i7
980x processor (3.33GHz) with 24GByte memory (8 threads).

All reconstructions start from a 0.15 × 0.15 m2 domain D
filled with air as an initial estimate of the permittivity (we
verified experimentally that the choice of this initial estimate
is not so critical by running the algorithm with several initial
estimates). This domain is discretized in 30 × 30 square
inverse problem cells (edge size = 5mm ≈ λ0/15), yielding
a total of 900 permittivity unknowns. To solve the forward
problem, each inverse problem cell is subdivided in 2× 2 =
4 forward problem cells, which have the same permittivity. A
BICGSTAB-FFT iterative solver [19] is used to accelerate the

1Note that this choice of 9 receivers appears to be close to the degrees of
freedom criterion as derived in [18] and so does the number of 9 transmitters
for FoamTwinDiel, eventhough we do not aim at designing experiments
exactly according to this criterion. Such comparisons are only indicative
since the criterion in [18] was derived in the framework of linearized
diffraction tomography (assuming a weak scatterer with a slowly spatially
varying permittivity) and for non-aspect limited data.
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a b c d e

Fig. 3: Reconstruction results of different methods for three targets from the Fresnel database. Only the real parts of the permittivity profiles
are shown; the imaginary parts are nearly zero. From left to right: reference (permittivities 1.45 ± 0.15 and 3 ± 0.3), MS, SRVP, WCDA
with gs(η), WCDA with gh(η). From top to bottom: FoamDielInt; FoamDielExt and FoamTwinDiel.

forward solution. A calibration is applied to match amplitude
and phase between measured and simulated fields: for each
incidence, the measured scattered field values are multiplied
with a complex factor, which is the ratio of the simulated and
the measured incident fields at the receiver located opposite
to the source. To evaluate the quality of the reconstructions,
the reconstruction error R is defined as

R =
‖ εεεrec − εεεref ‖2

‖εεεref‖2
(11)

which expresses the normalized squared difference between
the reconstructed εεεrec and the reference εεεref permittivity
values on the grid. The reference primittivity profiles for our
experiments in Fig. 2-Fig. 4 and Table II are shown in Fig. 3.a.
Fig. 3.b-e show the reconstructions with the different methods
using 108 data (243 data for FoamTwinDiel). Only the real
parts of the permittivities are shown, since the imaginary
parts are almost zero. The regularization parameters for MS
and SRVP were set as in [20]: µ = 2 × 10−3 for MS and
µ = 3 for SRVP. The reconstructions with MS in Fig. 3.b
(obtained after 20 iterations) show the plastic and—somewhat
less clearly—the foam cylinders in the right locations but
the images are over-smoothed as expected. The reconstruc-
tions with SRVP in Fig. 3.c yield three distinct permittivity
value ranges corresponding to plastic, foam and background.
FoamDielInt (at 22 iterations) is well reconstructed, although
some deviations are visible in the foam contour, reflecting the
use of four transmitting antennas. However, FoamDielExt (at
28 iterations) and FoamTwinDiel (at 85 iterations) show many
swapped permittivity cells, as was observed also with SRVP in

[20], where 5784 (13014 for FoamTwinDiel) data were used.
The reconstructions with WCDA in Fig. 3.d,e (at 20 iterations)
show that the plastic cylinders are very well reconstructed in
the right locations. The foam cylinders also are reconstructed
in the right locations but their edges are smoother than those
of the plastic cylinders—foam is less contrasting with air than
plastic. Furthermore, gs yields sharper edges than gh while
the reconstruction errors are smaller (see Table II). Overall, the
WCDA results are much closer to the reference targets and this
is confirmed by TABLE II and the cross-sections in Fig. 2. By
comparing visually the results in Fig. 3 to the reconstructions
of the same targets by a number of different methods in
the special issue [13], we can conclude that WCDA yields
similar or sometimes even better results from much fewer
measurements. Note also that most of the results reported in
[13] correspond to multifrequency measurements, while single
frequency was used in our experiments. Smoothing of the foam
cylinder appears to be less pronounced with the weighted L-2
norm Total Variation regularization in [21] and sharp edges
of the foam cylinder are obtained with Piecewise Smoothed
SRVP regularization in [20], but both of these were obtained
from large data sets, and the first method used multi-frequency
data (2GHz-10GHz) and a positivity enforcement while the
latter method specifically is developed for piecewise (quasi-
) homogeneous objects and employed an initial estimate that
was closer to the solution.

In our experiments, the proposed approach yields sim-
ilar improvements over the two reference methods in 3D
reconstructions as well. This was illustrated for simulated
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(a) (b)
Fig. 4: Comparison between different methods in terms of (a)
reconstruction error and (b) computing time as a function of the
number of employed receiving antennas for FoamDielExt.

3D data in [12]. A reconstruction example obtained from
experimental data from the 3D Fresnel database [22] is
shown in [23]. Due to the limited space and scope of this
communication, 3D reconstruction will be elaborated on
in a follow-up paper.

Fig. 4 shows the reconstruction error and the reconstruction
time with 8 transmitters [17] as a function of the number of
receivers (9 to 241) for FoamDielExt. Clearly, the reconstruc-
tion error of the proposed method with gs remains smallest for
any number of receivers, while the computation time behaves
similarly to MS. The corresponding plots for WCDA with gh
(not shown) are similar to those with gs.

V. CONCLUSION

We presented a class of weakly convex discontinuity adap-
tive models suitable for convex optimization in the complex
domain. Huber function is one of the models in this class and
another function, which yields sharper edges was illustrated.
When applied to electromagnetic inverse scattering, the result-
ing reconstructions preserve edges well and show a smaller
relative error than the reference methods, even with less data
points.
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