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Abstract—Total variation (TV) methods have been proposed to
improve the image quality in count-reduced images, by reducing
the variation between neighboring pixels. Although very easy to
implement and fast to compute, TV-based methods may lead to a
loss of texture information when applied to images with complex
textures, such as high-resolution abdominal CT images. Here,
we investigate the use of another regularization approach in the
context of medical images based on multiresolution transforma-
tions. One such transformation is the shearlet transform, which is
optimally sparse for images that are C2 except for discontinuities
along C2 curves, and has better directional sensitivity than most
other, related, wavelet transform approaches. We propose to
solve the convex problem using the split-Bregman (augmented
Lagrangian) approach. One of the primary advantages of the
split-Bregman approach, is that the shearlet transform can easily
be incorporated into the sparse-view CT reconstruction.

The required sparsity prior is the `1 norm of the shearlet coef-
ficients. Results are shown for this method in comparison to the
same framework with TV as the regularization term on simulated
data. The noise-resolution performance is investigated at different
contrast levels. At equal image noise, TV-based regularization
outperforms shearlet-based regularization. However, when image
texture is analyzed on measured mouse data, shearlets outperform
TV, which suffers from staircasing effects.

Our results show that there are benefits in using shearlets in
CT imaging: texture is reconstructed more accurately compared
to when TV is used, without biasing the image towards a
piecewise constant image model. However, due to the larger
support of the basis functions, our results suggest that uncareful
usage of shearlets may lead to wavy artifacts, which can be
equally unwanted as staircasing effects.

Index Terms—Computed Tomography (CT) reconstruction,
Image reconstruction

I. INTRODUCTION

TOTAL variation (TV) minimization or regularization is
one of the techniques that have been extensively in-

vestigated in the context of image denoising by different
image processing groups [1]. In the context of compressed
sensing, TV minimization has already been used for few-view,
limited-angle CT reconstruction [2]–[6], interior tomography
[7], [8] and CT image denoising or restoration [9], [10].
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These regularizing methods in general take advantage of the
natural redundancy present in images. CT images can be
conceptualized as being the sum of edges, uniform intensities,
a repeated structure of fine-scale patterns (texture) and a noise
component [11], [12]. In image denoising applications it would
then be beneficial if the representation of that image separates
the structural components from the noise. This is only possible
if the noise-free image can be approximated with a small
number of significant coefficients in that representation. In that
case, the representation is called a sparse representation. The
noise should then be non-sparse in that same representation.
With TV regularization, the gradient operator is used as the
sparsifying transformation, transforming the original image
into an edge map.

TV-based methods are best suited for piece-wise constant
images, such as images of simple geometric shapes with flat
intensity. Some authors have reconstructed such a simple phan-
tom (e.g. Shepp-Logan phantom [13], left on Fig. 1) exactly
from only 22 projections [2], [3], [14], which is impressive and
promising for dose-reduction applications in CT. However, TV
minimization can not reconstruct an image from 82 realistic
projections anymore [5], [15] when the simple phantom is
replaced by a phantom specifically designed for this purpose
(middle of Fig. 1). Some medically relevant information, such
as a tumor in the brain, is inevitably lost, because the tumor
was designed to be invisible for a certain number of projection
views (ghosting [5], [15]). When the phantoms or images
become even more complex, i.e. images that contain complex
textures and gradual intensity transitions like high-resolution
lung CT images (e.g. right image on Fig. 1, from [16]), TV
based methods often produce cartoon-like approximations. At
least 100 views are necessary when realistic human anatomy is
present [17]. The same holds for µCT [18] as well as for MRI
[19], [20]. This discrepancy between results obtained from
simple phantoms and from realistic data reflects the fact that
most natural images are not of bounded variation [21], [22],
the search space in which TV minimization operates. Only the
edge component can generally be expected to be of bounded
variation [21]. While total variation minimization keeps the
noise component small, the texture component is often elim-
inated due to the staircasing effect [23]–[26]. Unfortunately,
high-resolution medical images are not of bounded variation
[5], [21]. This makes the TV regularizer unsuited for medical
images from a mathematical point of view. Consequently, it is
beneficial to investigate regularizers that offer a better sparse
representation of medical images than TV.

Several alternatives have been suggested in the literature.
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Fig. 1. Left: Shepp-Logan phantom [13], which only requires 22 projection
views to reconstruct completely. Middle: More complex phantom, as used in
[5], [15]. Right: Addition of realistic lung texture to the XCAT phantom [16],
[27] (Window [-900 0] HU).

One possibility is the use of the wavelet transformation. This
transformation provides a decomposition of a signal over
dilated and translated versions of a fixed waveform, called
the mother wavelet. It allows the regularization to adapt to
the image content at different resolution scales. While TV
minimization might destroy soft edges, these would usually be
reconstructed better using wavelets. The wavelet coefficients
evolve across the scales at a rate that depends on the local
regularity of the signal (e.g. depending on edge smoothness).
Hence, even very ”weak” edges produce a significant response
at a certain scale. In this way, the wavelet coefficients give
valuable information about the edge which the discrete gradi-
ent operator lacks.

The Haar wavelet, the simplest possible wavelet, has al-
ready been investigated for regularized CT reconstruction by
Garduño et al. [15]. They found that reconstructions with a
sparse Haar transform are not more effective from the medical
diagnostic point of view than reconstructions that have a small
TV value. The authors did not explain this result. Thus, the
search for an objective function that provides diagnostically
efficacious reconstruction from a limited number of CT pro-
jections remained open [15].

However, Haar wavelets are optimal for piecewise constant
images and are very similar to TV in this regard. Steidl et al.
[28] have proven that for 1-D signals, Haar wavelet shrinkage
is equivalent to a single step of space-discrete TV diffusion or
regularization of two pixel-pairs, when applied to one single
scale only. To our knowledge the higher-dimensional case has
not been proven yet, since it cannot be treated as a straightfor-
ward generalization of 1-D ideas [28]. The near equivalence
of the Haar-based regularization to the TV regularization in
1-D might explain why Haar-based regularization did not
outperform TV regularization.

Furthermore, it is known that the wavelet transform in
general has poor directional selectivity. The discrete wavelet
transform is often computed by using basis functions that
are the tensor product of one-dimensional wavelets and one-
dimensional scaling functions. This construction of wavelets
will produce a checkerboard pattern simultaneously oriented
along several directions [29], also known as the checkerboard
problem. This approach can deal with point-wise singularities
(such as point sources), but does not allow to make a distinc-

tion between features at +45◦ and −45◦. As a result, many
nonzero wavelet coefficients may be needed to represent a line
singularity at an arbitrary orientation.

The poor orientation selectivity of the wavelet transforma-
tion led to the development of a number of multiresolution
geometrical transformations with typically a very high number
of analysis orientations, such as ridgelets [30], [31] and
curvelets [32], [33]. The ridgelet transform is well suited
for representing discontinuities along straight lines, in con-
trast to the curvelet transform, which can even represent
discontinuities along curves with bounded curvatures. A recent
development is the shearlet transform [34]. This non-isotropic
version of the wavelet transform is comparable to curvelets, as
it also performs multiscale and multidirectional analysis, and
both transformations can represent curve-like singularities in
images. Guo et al. [35] have shown that the asymptotic decay
rate of the shearlet transform, for fine scales, can be used
to signal both the location and the orientation of the edges
of an image and that the coefficients of large magnitude will
correspond to edges. Furthermore, the decay rate across scales
can be used to distinguish between noise spikes and edges
[36], a property also holding for wavelet coefficients.

There are a number of advantages in using shearlets in
imaging [37], [38]. The primary advantage for our use case
is that shearlets allow for a lower redundant sparse tight
frame representation than other related multiresolution rep-
resentations (such as e.g., ridgelets, curvelets, ...), while still
offering shift invariance and a directional analysis. Basically,
the number of transform coefficients is not much larger than
the number of pixels in the original image, and no artifacts
are introduced when shearlet coefficients are adjusted. The
directional analysis allows the shearlet basis functions to align
with x-ray noise streaks in the reconstructed images, which
allows these streaks to be approximated with less significant
coefficients.

Secondly, the shearlet representation can be used to decom-
pose the space L2(R2) of images into a sequence of spaces,
associated to a hierarchy of scales [39], [40]. While edges
are quantified in the space of bounded variation BV (R2),
other relevant features such as homogenous regions, texture,
and other oscillatory patterns will belong to spaces between
the smaller BV (R2) and the larger L2(R2) [40]. By setting
shearlet coefficients below a certain threshold to zero, image
features present above a certain scale can be extracted [39].

Both properties are useful when we apply soft thresholding
(soft shrinkage) later on in Section II-2. A third property
is that shearlets take edges into account in a multitude of
directions, decomposed into a hierarchy of scales. This allows
the detection of soft edges. Lastly, in compressed sensing the
goal is to use a transformation with the best approximation
(compaction) properties. In higher dimensions, shearlets are
a better candidate for this than wavelets or TV, as shearlets
have an essentially optimal approximation error for images
that contain edges (images that are C2 (i.e. twice continuously
differentiable) apart from discontinuities along C2 curves)
[34].

Shearlets are very similar to curvelets, as both perform a
multiscale and multidirectional analysis. In fact, both trans-
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forms have optimal sparsity for images which have disconti-
nuities (edges) along a C2 curve [34], [41]. However, some
important differences remain [38]. Shearlets are generated by
applying a family of operators to a single function, contrary
to curvelet basis functions. This makes the discrete imple-
mentation of curvelets very challenging. Two methods were
suggested by Candès et al. [32] to make the implementation
easier. In a first method, aliasing is deliberately introduced
through wrapping. In a second method, the nonequispaced
fast Fourier transform (NFFT) is used. The inverse NFFT
should then be computed with a conjugate gradient type
algorithm, utilizing one NFFT and one adjoint NFFT per
iteration [42]. This makes the calculations less efficient. A
second difference with curvelets is that shearlets are associated
to a multiresolution analysis, while curvelets are not. Thirdly,
in the construction of the shearlet tight frame, the number
of orientations doubles at every scale, while for curvelets,
this number doubles every other scale. A final difference,
and very important one, is that shearlets allow for a much
less redundant sparse tight frame representation than curvelets,
while still offering shift invariance [37]. These properties
make the shearlet transform an attractive candidate for image
representation [37].

In this paper, we investigate if shearlets can be used in
regularized CT reconstruction, and if they show any of the
previously mentioned benefits compared to TV regularization.
This is based on the results of shearlet-based denoising in
image processing [38], [39], in magnetic resonance imaging
(MRI) reconstruction [43] and preliminary numeric results
we published previously [44]. Previously, Colonna et al. [45]
have used the shearlet representation to invert the Radon
transform directly. Their approach is not directly applicable
to ill-posed systems, i.e. sparse viewing. We propose to use
a recently proposed efficient solver, based on an augmented
Lagrangian (or split-Bregman) approach [46], [47], as an
alternative method for sparse-view CT reconstruction. Split-
Bregman methods have been found to be successful in other
applications, such as MRI image reconstruction [43]. This very
general method allows the incorporation of extra regularization
terms quite easily.

II. THE SPLIT-BREGMAN BASED CT RECONSTRUCTION
METHOD

Imaging model
In all the following, we will denote an `1-norm by |.|1,
an `2-norm by ‖.‖2. Matrices are in bold uppercase font,
vectors are typeset in a bold lowercase font. In a noise free
case, the projection data y can be modeled by the discrete
approximation of the imaging process y = Wx, with W the
system matrix modeling the X-ray transformation and x the
reconstructed image.

With no noise present and an underdetermined system (less
projection samples than pixels in the image), solving for x is
defined as minimizing the least-squares cost function:

g(x) = ‖y −Wx‖22 . (1)

The optimal solution x̂ that minimizes (1) is then given by
the pseudoinverse of W. Unfortunately, this pseudoinverse is

too complicated to compute directly in practical CT imaging.
An alternative, iterative, method to find x is using gradient
descent steps ∂g(x)

∂x = −2WT (y −Wx), such that

x(i+1) = x(i) + 2λWT
(
y −Wx(i)

)
, (2)

with i the iteration number and λ a relaxation parameter.
Assuming that the row and column sums of W are equal
to 1, λ equals 1/2 and correct scaling is applied, this gives
the classical Simultaneous Iterative Reconstruction Technique
(SIRT) algorithm [48], [49]. This gradient descent algorithm
will converge to the same solution x̂ as would be obtained if
the pseudoinverse would be calculated directly.

In the presence of noise in projection space, the system can
be modeled by an additive approximation y = Wx + n, with
n given by a Gaussian Random Field [37], [50]. Because the
noise is zero-mean by approximation, the data fitting function
(1) is still applicable.

Minimizing (1) for x is difficult with the addition of noise,
and even more difficult in the case of sparse-view systems.
This makes the problem very ill-posed. Therefore, we define
a new cost criterium with an added regularization term:

x̂ = arg min
x

|Φ(x)|1 s.t.
∥∥C−1 (y −Wx)

∥∥2

2
≤ ε. (3)

Here, ε acts as an upper bound on the uncertainty about the
measurements y, and Φ is a linear sparsifying transformation.

Matrix C is in first instance applied to weight the errors
corresponding to projections with high attenuation (high values
of y) [51]. These detected values will contain more noise than
values projected through less dense material, and will thus
have lower signal-to-noise ratio (SNR). Therefore, we need to
weight the projected values according to their variance, which
is equal to the mean projection value under the assumption of
poisson noise:

C = diag (c0, c1, ..., ci) with ci = e−E[yi]. (4)

We can use the projection value itself as an estimate for the
expected value E [yi].

Next to simple exponential weighing, C can also be used
to model the detector acquisition system. Different effects
can be taken into account in a diagonal matrix, such as gain
per detector pixel, thermal stability, dark current drifts and
linearity [52]. These effects can be modeled by multiplying
ci with appropriately measured air scans. Signal crosstalk can
be modeled with off-diagonal covariance entries [53], as well
as afterglow and primary speed. In that case, C serves as a
prewhitener for this system, decorrelating the noise.

Because Eq. (3) is non-differentiable (the `1-norm has a
discontinuity at the origin), it should be converted to an
unconstrained problem [47]:

x̂ = arg min
x

|Φ(x)|1 + λ
∥∥C−1 (y −Wx)

∥∥2

2
, (5)

with λ a constant. In words, among all solutions which are
closest (in the weighted least-squares sense) to the acquired
data, equation (5) finds a solution which is sparse in the `1-
sense in the domain of the transform Φ. The use of the `1-
norm leads to suppression of many small coefficients in favor
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of a few large coefficients, and is thus crucial to the whole
approach of regularization with sparsifying transforms [19].

Overview of the split-Bregman framework

There is a vast amount of literature available on how to solve
equations such as (5) in general, and in particular adapted
for CT reconstruction. In the majority of cases it is solved
through a heuristical method, alternating the optimization of
the data fitting constraint with the sparsity constraint [2],
[4], [6], [7], [54]. We will use the split-Bregman framework
[47] (also known as the split-augmented Lagrangian). This is
very similar to work done in iterative thresholding [55], [56],
with the benefits of having a relatively low memory footprint
[47], simple and fast iteration steps, and that the technique is
generally easy to implement, even for complex problems.

Goldstein and Osher [47] have shown that the generalized
constrained optimization problem

arg min
x

J(x) s.t. y = Wx (6)

with J a convex energy functional, can be solved by iterating
over

x(i+1) = arg min
x

J(x) +
λ

2

∥∥∥Wx− b(i)
∥∥∥2

2
(7a)

b(i+1) = b(i) + y −Wx(i). (7b)

The iterates x(i) will get arbitrarily close to a solution of
the original constrained problem (6).

Applying (7a) and (7b) to cost function (5) together with
variable splitting ultimately leads to the following three update
equations [47], [57]:

x(i+1) = arg min
x

λ

2

∥∥C−1 (y −Wx)
∥∥2

2
(8a)

+
µ

2

∥∥∥d(i) − Φ(x)− b(i)
∥∥∥2

2

d(i+1) = arg min
d

|d|1 (8b)

+
µ

2

∥∥∥d− Φ
(
x(i+1)

)
− b(i)

∥∥∥2

2

b(i+1) = b(i) +
(

Φ
(
x(i+1)

)
− d(i+1)

)
. (8c)

The `1- and `2-norm from the regularized quadratic problem
(5) are now split into different minimization problems: a
sequence of unconstrained optimization problems and one
Bregman update step. Eq. (8b) and (8c) are easy to solve, and
Eq. (8a) only needs to be solved for x(i+1) approximately.
Even then, the algorithm still converges [47].

We have introduced two new variables which elicit further
explanation: λ and µ.

Parameter λ was added by the conversion of the constrained
optimization problem to an unconstrained one. In this context,
it can be interpreted as the contribution of the regularization
to the total cost. The lower its value, the lower the importance
of the data fitting term, which amounts to more regularization
(denoising).

The ratio µ/λ determines the convergence speed. If µ is
set to 0 and λ to 1, no regularization is performed and the
classical SIRT algorithm is obtained, minimizing cost function

(1). A ratio of 2.0 was empirically determined to deliver a good
convergence speed [47]. We will experimentally determine
good parameters for our study further on in Section V-B.

Regularization terms

In the previous sections Φ was intentionally left unspecified.
Indeed, no assumptions have been made apart from convexity.
The purpose of this study is to investigate if using the discrete
shearlet transformation as a regularization term is superior to
isotropic TV minimization. Isotropic TV was chosen as this
is what is used most widely in medical imaging.

1) Isotropic Total Variation: For TV minimization the
discrete gradient operator∇ can be used as Φ. For 2D isotropic
TV, J(x) then becomes:

J(x) =
∑√

(∇x (x))2 + (∇y (x))2. (9)

The minimization problem can then be solved by setting
dx = ∇x (x) and dy = ∇y (x) [47]. Despite the fact that dx
and dy can not be decoupled, the problem can still be solved
using a generalized shrinkage formula [47], [58].

Equations (8a-8c) become:

x(i+1) = arg min
x

λ

2

∥∥C−1 (y −Wx)
∥∥2

2
(10a)

+
µ

2

∥∥∥d(i)
x −∇x(x)− b(i)

x

∥∥∥2

2

+
µ

2

∥∥∥d(i)
y −∇y(x)− b(i)

y

∥∥∥2

2

s(i+1) =

√∣∣∣∇x (x(i+1)
)

+ b(i)
x

∣∣∣2 +
∣∣∣∇y (x(i+1)

)
+ b(i)

y

∣∣∣2
(10b)

d(i+1)
{x,y} = max

(
s(i+1) − 1/µ, 0

) ∇{x,y} (x(i+1)
)

+ b(i+1)
{x,y}

s(i+1)

(10c)

b(i+1)
{x,y} = b(i)

{x,y} +
(
∇{x,y}

(
x(i+1)

)
− d(i+1)

{x,y}

)
. (10d)

The discrete gradient operator ∇{x,y}(x) is defined as:

∇x(x)(i, j) = x(i, j)− x(i− 1, j) (11a)
∇y(x)(i, j) = x(i, j)− x(i, j − 1), (11b)

with wrapping of the values at the edges of the image volume.
2) Discrete shearlet transformation: The main mathemat-

ical ideas of the discrete shearlet transformation (DST) are
reiterated here for completeness. For more detail, the reader
is referred to the literature [34], [38], [59], [60].

Let ψj,k,l(x) denote the shearlet basis functions (or in
the remainder simply called shearlets), then the continuous
shearlet transformation (CST) of an image f(x) ∈ L2(R2) is
defined by [35], [61]:

[SHψf ](j, k, l) =
∫
R2
f(x)ψj,k,l(l− x)dx (12)

where j ∈ R, k ∈ R and l ∈ R2 denote the scale, orientation
and the spatial location, respectively. Shearlets are formed by
dilating, shearing and translating a mother shearlet function
ψ ∈ L2(R2), as follows:
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ψj,k,l(x) = |detA|j/2 ψ
(
BkAjx− l

)
(13)

where A and B are invertible 2×2 matrices, with det B = 1.
For shearlet analysis, the transformation matrices A =(
a 0
0
√
a

)
and B =

(
1 s
0 1

)
are used. A is an anisotropic

scaling matrix with scaling factor a > 0 and B is a geometric
shear matrix with parameter s ∈ R.

The shearlet mother function ψ is a composite wavelet
that satisfies appropriate admissibility conditions [35]. It
is defined in the Fourier transform domain by Ψ(ω) =
Ψ1 (ωx) Ψ2

(
ωy

ωx

)
, with ω = [ωxωy], Ψ1(ωx) the Fourier

transform of a wavelet function and Ψ2(ωy) a compactly
supported bump function Ψ2(ωy) = 0⇔ ωy /∈ [−1, 1].

Any f ∈ L2(R2) can be recovered via the reproducing
formula:

f =
∑
j,k,l,d

〈f, ψj,k,l〉ψj,k,l. (14)

The DST was implemented as proposed by Goossens et
al. [62]–[64], which leads to a very low redundancy factor
and a relatively short computation time compared to other
implementations. We implement Φ as the forward shearlet
transformation (Eq. 12) and its adjoint Φ† as the inverse
shearlet transformation (Eq. 14).

The Meyer wavelet is used as mother wavelet Ψ1(ωx)
for the shearlet transformation. This mother wavelet is an
appealing choice due to its excellent localization properties in
both time and frequency and also because the filters are defined
directly in the frequency domain [62], [65]. The angular filter
used is given by:

Ψ2(ω) =



0 ω < − 1+α
2

sin
(
π
2 v
(
α+2ω+1

2α

)) ∣∣ω + 1
2

∣∣ ≤ α
2

1 |ω| < 1−α
2

cos
(
π
2 v
(
α+2ω−1

2α

)) ∣∣ω − 1
2

∣∣ ≤ α
2

0 else

(15)

α = π
2 α = π

3 α = π
6 α = π

8 α = π
12α =

1
2

α =
1
3

α =
1
6

α =
1
8

α =
1
12

Fig. 2. Plot showing shearlets for different values of the parameter α. The
shearlets become more elongated with decreasing α values.

The choice of α ∈
[
0, 1

2

]
here is important, it is a constant

parameter that determines the bandwidth of the angular filters
(see Fig. 2). The choice of α also has an influence on the
redundancy factor of the DST.

Figure 3 shows all subbands of the shearlet transformation
using 3 scales with 4 directions per scale, applied to measured

scale 3 (16x16)

input image (512x512)

scale 2 (64x64)

scale 1 (256x256) scale 0 (512x512)

Fig. 3. Example of shearlet transformation coefficients, using 3 subbands with
4 directions per subband and α = 1/2, applied to measured plastimouse data.
All coefficient images show the magnitude of the coefficients (white equals
a high magnitude, black equals zero. Magnitude normalized per subband).
Images are for illustrative purposes and not to scale.

plastimouse data (see Section III-B). For an input image of
512×512 voxels, this leads to subbands with respective sizes
16× 16, 64× 64, 256× 256 and 512× 512 coefficients.

CT reconstruction algorithm

The performance of the split-Bregman method is largely
dependent on the subproblem solvers for Eq. (8a) and Eq.
(8b). To find a solution to Eq. (8a), we search for the roots of
its derivative:

W†C−1(y −Wx) +
µ

λ
Φ†
(
d(i) − Φ(x)− b(i)

)
= 0. (16)

This can be rewritten as

(
W†C−1W +

µ

λ
Φ†Φ

)
x = W†C−1y +

µ

λ
Φ†
(
d(i) − b(i)

)
(17)

Remember that W is the forward projector and Φ is the
forward sparsifying operator. We now also need W†, the back
projector, and Φ†, the backward sparsifying operator.

When shearlets are used, Φ†Φ = I, because of the property
that shearlets form a tight frame [38], [63]. However, in CT
reconstructions W†C−1W will usually not be equal to I.
C may have off-diagonal elements due to modeling of e.g.
detector element crosstalk or afterglow, and W is not always
square. Furthermore, applying W† (direct backprojection)
after W will result in a blur proportional to 1/r with r the
distance from the source. Thus for shearlets, Eq. (17) can not
be easily solved through inversion. The same property holds
when TV is to be used. For isotropic TV, Eq. (17) becomes:

(
W†C−1W +

µ

λ

(
∇†x∇x +∇†y∇y

))
x = W†C−1y

+
µ

λ

(
∇†x
(
d(i)
x − b(i)

x

)
+∇†y

(
d(i)
y − b(i)

y

)) (18)

We remark that ∇†x∇x+∇†y∇y 6= I. Because of these issues
for both shearlets and TV, we selected the conjugate gradient
(CG) method [66] to find a solution for Eq. (17).
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In Eq. (8b), there is no coupling between elements of d. The
optimal value of d can then be computed using the point-wise
soft shrinkage operator:

d(i+1)
k = softshrink

(
[Φ (x)]k + b(i)

k ,
1
µ

)
, (19)

with
softshrink(x, γ) =

x

|x|
max (|x| − γ, 0) . (20)

Here x is one coefficient and γ is the shrinkage threshold.
Shrinkage is an extremely fast operation because it requires
only a few operations per element of d(i+1).

When shearlets are used as sparsifying operator, all cal-
culations involving element-wise operations (such as soft-
shrinkage or the Bregman update step) are executed per
element per scale per direction. It was empirically found that
the soft-shrinkage is best applied using an energy dependent
thresholding, by multiplying the threshold value 1

µ by the
energy of the subband filter where the threshold is being
applied. This energy is calculated by applying the radial
filters of the shearlet transformation to a Dirac delta function
and calculating the squared `2-norm of the resulting shearlet
coefficients per scale. This energy will be the highest for the
highest resolution scales, and lowest for the low-resolution
scale.

The pseudocode of the split-Bregman algorithm for CT
reconstruction can be found in the Appendix. Lines 1-9
correspond to the pre-calculation of the energy dependent
thresholding in the case of shearlet-based regularization.

III. DATA ACQUISITION

A. Data simulation

Two phantoms were used to measure the performance and
properties of the proposed algorithms. The first simulation
phantom consists of a 4 cm diameter phantom, containing two
gradients. Both gradients are 1 cm wide, ranging from contrast
−85% to 100%. This allows us to evaluate the difference
of using TV regularization to that of SH regularization for
a smooth, non-piecewise constant object.

The second phantom is the clock phantom used by Evans
et al. [67], scaled down to small-animal size. It consists of a 4
cm diameter water background, modeled after the attenuation
of water at an energy of 60 keV. The phantom contains 8
inserts, each with a different contrast. Each insert is located
1.1 cm from the phantom center, with a diameter of 0.4 cm.
This phantom will be used to determine the optimal choice of
µ
λ and the effect of contrast magnitude on the noise-resolution
tradeoff.

All phantom data was simulated by forward projecting an
oversampled phantom using the geometry of the micro-CT
scanner used for the real measurements (Sec. III-B). This will
allow us to use the same reconstruction settings for all datasets.
We simulated fan-beam data over 512 uniformly spaced angles
over 2π. The detector consists of 592 elements with a pixel
pitch of 0.2 mm. The distance between tube and detector
was set to 300.33 mm and the radius of rotation 113.39 mm,
resulting in a zoom factor of 3. The detector was offset by

9.69 pixels. After forward projecting the phantom, photon
noise was added corresponding to 2× 105 photons per pixel.
To investigate the influence of angular undersampling (fewer-
view reconstruction), this sinogram was reduced to only 128
projection views, by uniformly selecting each 4th projection
view.

B. Data acquisition

To evaluate the performance on real data and for realistically
textured objects, one realistic preclinical phantom was im-
aged. The plastimouse phantom (Frank Verhaegen1, Maastro
Clinic, the Netherlands) is made by plastinating a mouse. This
ensures that no movement will occur while scanning over
long time periods. Although the image contrast obtained with
this technique is not realistic because all bodily fluids have
been replaced by the same plastic, the textures remain. This
allows for in depth evaluation of the proposed reconstruction
methods.

A Triumph-II CT scanner (TriFoil Imaging, Northridge, CA,
USA) was used to conduct the acquisitions. It consists of
a 2368×2240 pixel detector with pixel pitch 0.050 mm. A
zoom of 3× was employed to get a field of view (FOV) of 42
mm. The tube voltage was set to 75 kVp, with a tube current
of 240 µA, a detector exposure time of 700 ms and a focal
spot size of 50 µm. The plastimouse was scanned 33 times
in the same position, each time using 1024 angles over 2π.
As the reconstruction algorithms were only implemented for
fan-beam data, only the central detector row was retained from
the measured cone-beam data to give fanbeam data without the
need for rebinning. This fanbeam dataset was then subsampled
to 592 detectorpixels (pitch 0.2 mm), and 512 angles by
uniformly selecting each 2nd projection view.

Three datasets were generated from this acquisition data.
The first is a a reference (quasi-noiseless) sinogram, generated
by averaging all 33 fanbeam sinograms. The second is a noisy
sinogram, which was made by selecting only one sinogram of
the 33 measured ones. The last dataset is fewer-view data,
generated by reducing the reference sinogram to 128 views,
keeping each 4th sinogram row. Both the reconstructions of
the noisy sinogram and the fewer-view sinogram can then be
compared to the reference reconstruction obtained from the
quasi-noiseless sinogram.

IV. DATA RECONSTRUCTION AND ANALYSIS

All datasets were reconstructed using SIRT, split-Bregman
using isotropic TV (SpBR-TV) and split-Bregman using shear-
lets (SpBR-SH), to a 5122 voxel grid. A voxel pitch of 0.080
mm was chosen to include the full phantom in the FOV.

The pseudocode to SpBR found in the Appendix was imple-
mented in C++, using the 2D distance driven algorithm [68] as
forward and back projector. The number of CG iterations used
in the inner loop was always set to 30. We used C = diag{ci}
with ci = e−yi , using yi as an estimator for the mean number
of photons detected in detector pixel i [51], even when the
ground-truth was available from the simulations. In the case

1Frank.Verhaegen@maastro.nl
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of shearlet-based regularization, four subbands were used with
8 analysis directions each. Parameter α was always set to
1
2 . The energy dependent thresholding was implemented by
multiplying 1

µ (γ in Eq. (20)) with the energy of the subband
where the threshold is being applied (see the last paragraph
of Section II-2).

A. Performance analysis

The optimal convergence parameters were determined by
holding the cost function constant (i.e. constant λ), after which
the iteration at convergence will be determined for different
values of convergent rate µ

λ . In a second step, the convergence
rate is held constant, while determining the iteration at conver-
gence for different cost functions, determined by varying λ.
We define convergence as

∥∥x(∞) − x(i)
∥∥2

2
< 10−4. We chose

to approximate x(∞) by the reconstructed image at iteration
80.

The effect of contrast magnitude on the noise-resolution
tradeoff for SIRT, SpBRTV and SpBRSH will be determined
by using the method proposed by Evans et al. [67]. Because the
proposed algorithms are non-linear, both noise and resolution
need to be evaluated locally. For each contrast value, noise
is determined by a circular region around the insert. The
resolution is determined by the Edge Spread Function (ESF)
of the insert edge. A parameterized ESF model is then fitted
to this profile [69], after which this analytical model can be
differentiated to generate a Line Spread Function (LSF). By
using an analytical model for the ESF, the influence of limited
sampling and noise on the LSF calculation is reduced. The
LSF is then Fourier transformed to generate the Modulation
Transfer Function (MTF). Because the MTF is a function and
not a single metric, Evans et al. [67] represent the MTF by
the value A10:

A10 =

∫ 10 lp/mm

0
MTF (f) df
10

. (21)

A10 is normalized to 10, as this is the area under an ideal
MTF curve that has amplitude 1.0 for all spatial frequencies.
The higher A10, the higher the resolution.

B. Texture analysis

The influence of SpBR-TV and SpBR-SH on texture was
measured on the measured plastimouse data with the Gray
Level Co-occurrence Matrix (GLCM) [70], calculated on a
region of interest (ROI) encompassing the stomach contents
(dashed square in Fig. 4). The GLCM allows us to extract
second order statistical texture features. For this evaluation
study, we compare 4 metrics defined over the GLCM: contrast,
correlation, energy and homogeneity. Contrast is a measure of
the intensity contrast between a pixel and its neighbor over the
whole image, with 0 the contrast value of a constant image.
Correlation is a measure of how correlated a pixel is to its
neighbor over the whole image. The energy returns the sum of
squared elements in the GLCM. A GLCM with a low number
of high-value elements will have a higher energy than a GLCM
with a high number of low-value elements. A constant image

contrast phantomgradient phantom plastimouse reconstruction

-85%

+30%

-7% -15%

+285%

-30%

+7%+15%

Fig. 4. Reference image of the three datasets used. Left: gradient phan-
tom. Middle: contrast phantom. Right: measured plastimouse reconstruction.
Dashed square: ROI used for texture analysis.

will have an energy of 1. Finally, the homogeneity represents
the closeness of the distribution of elements in the GLCM to
the GLCM diagonal.

For each reconstructed image, the stomach ROI was cropped
and quantized to 32 levels. The GLCM was then calculated for
the 0◦, 45◦, 90◦ and 135◦ neighbors using the functionality
provided by MATLAB (MATLAB 7.11.0, The Mathworks
Inc., Natick, MA). As a final aggregate texture metric, the 4
texture properties were combined to calculate the Euclidean
distance to the texture metric calculated on the reference
texture. All 4 properties were normalized so to give equal
weight to each property inside the distance function.

V. RESULTS

A. Gradient phantom

Figure 5 shows a zoomed in part of the the reconstructions
of the gradient phantom using SIRT, SpBR-TV and SpBR-
SH, compared to the reference phantom. Both SpBR-TV and
SpBR-SH are shown at matched noise (1.5%), while SIRT is
shown at convergence (800 iterations). Both methods correctly
reconstruct both the spherical gradient as well as the wedge
gradient. On the wedge gradient (bottom rows), it can be
noticed that TV-based reconstruction does not follow a smooth
line along the gradient, and follows the straight edge too fast.
This is a sign of slightly lower resolution for the chosen
parameter settings. The shearlet-based reconstruction follows
the gradient more smoothly, but exhibits oscillating effects
around sudden intensity changes. This is also visible in the
image itself, where vertical lines are present around the hard
edge.

B. Convergence analysis

The convergence of SpBR-TV and SpBR-SH is plotted in
Fig. 6. For SpBR-TV, a convergence rate of 3 is optimal,
resulting in convergence in only 10 iterations. The convergence
becomes worse with a rate lower or higher than this optimum.
For SpBR-SH, the optimum is a lower bound on µ/λ. All
values larger than µ/λ = 9 lead to convergence in 10
iterations.

Based on these results, the optimal µ/λ of 3 was chosen
for SpBR-TV reconstruction, and µ/λ = 10 for SpBR-SH.
We can now investigate the number of iterations needed for
different cost functions. Fig. 6b shows that the number of
iterations needed can be estimated, as long as the regular-
ization is not too greatly enforced (large λ). For λ values
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TV SHSIRTreference

Fig. 5. Reconstructions of gradient phantom. TV and SH are matched
by noise, SIRT shown at convergence. Top rows: zoomed in on spherical
gradient. Middle row: profiles through wedge gradient. Red line is reference
reconstruction.
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Fig. 6. Convergence analysis for (left) fixed cost function and (right) for
fixed convergence rate.

smaller than 100 in the case of SpBR-TV, and smaller than
60 in the case of SpBR-SH, more and more iterations are
needed to reach the level of convergence needed. Although the
optimal parameters can be selected that ensure convergence in
than 10 iterations, in any case we will reconstruct all datasets
in the next subsections with 30 SpBR iterations. This will
ensure convergence regardless of the λ parameter selected.
The convergence rate for the following experiments was set
to the optimal µ/λ = 3 for SpBR-TV and µ/λ = 10 for
SpBR-SH.

C. Noise-resolution tradeoff

Figures 7 and 8 plot the noise-resolution tradeoff, for
different contrast magnitudes. Each data point was gathered
by reconstructing with varying λ, with lower λ leading to
less noise. The full-view dataset is the contrast phantom with
all 512 views, while the fewer-view dataset is the contrast
phantom with just 128 views. For higher-noise data points
the ESF model fitting becomes difficult, leading to the erratic
behavior. However, the general trend of each curve is still
visible.

Three observations can be made. First, generally all SpBR-
SH curves are positioned above and left of the SpBR-TV
curves reconstructed from the same dataset. Thus, the noise
is higher for equal resolution when shearlets are used instead
of TV. For some noise level, the lowest resolution is always
reached by the SpBR-SH reconstruction method on few-view
data (Fig. 8). Both methods outperform SIRT reconstruction,
especially on fewer-view data. A little better resolution can
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Fig. 7. Influence of contrast magnitude on noise-resolution tradeoff for
the full-view, noisy dataset. Dashed line: SIRT. Full line: SpBR-TV. Dotted
line: SpBR-SH. At equal resolution, noise is higher with SpBR-SH than with
SpBR-TV, especially for the ±7% contrast insert.

be found with SpBR-SH compared to SpBR-TV for fewer-
view data for the ±7% contrast inserts. A zoom on the −7%
insert reconstructed from fewer-view data is provided in Fig.
9. At matched resolution of A10 = 0.6, little noise is seen
for TV, while some patchy structures are visible on the insert
edge. For SH, some wavy lines are present that will lead
to higher noise measurements, though the insert is visually
rounder. At maximum resolution (SIRT A10 = 0.91, SpBR-
TV A10 = 0.88, SpBR-SH A10 = 0.96) the insert is still
visibly rounder for SH, though the wavy lines are even more
visible now.

Secondly, the difference between both SpBR methods be-
comes more and more clear for lower contrast magnitudes.
At low contrast (±7%) more noise is measured at equal
resolution for SpBR-SH compared to SpBR-TV. This effect is
less visible for ±30% contrast, where at lower resolution both
methods obtain the same noise level. Only at higher resolution
a separation between the two methods occurs.

Finally, comparing the results of the full-view dataset (Fig.
7) to the results obtained from the fewer-view dataset (Fig.
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Fig. 8. Influence of contrast magnitude on noise-resolution tradeoff for the
fewer-view, noiseless dataset. Dashed line: SIRT. Full line: SpBR-TV. Dotted
line: SpBR-SH. At equal resolution, noise is higher with SpBR-SH than with
SpBR-TV, especially for the ±7% contrast insert.

SIRT
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resolution

maximum
resolution

TV SH

Fig. 9. −7% contrast insert from the few-view dataset reconstructed with
SIRT, SpBR-TV and SpBR-SH at matched resolution (A10 = 0.6) and at
maximum resolution. Window [0.18 0.23] cm−1.

8), makes it clear that a higher resolution can be achieved at
the same noise level for full-view datasets. When fewer-view
data is used, the resolution drops. This is true for all three the
methods.

D. Texture analysis

Figure 10 plots the 4 texture metrics which were determined
from the GLCM. Each plot represents one texture metric, and
contains the results for SpBR-TV (full line) and SpBR-SH
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Fig. 10. Contrast, correlation, energy and homogeneity as measured from the
GLCM. Full line: SpBR-TV. Dotted line: SpBR-SH. Dashed line: reference
value obtained from full-view noiseless SIRT reconstruction. Black: noisy
dataset. Gray: fewer-view dataset.

(dotted line) for both the noisy dataset (black) as well as the
fewer-view dataset (gray). The value obtained for the averaged
plastimouse dataset with all views is pictured by the dashed
line, which serves as a reference property value. The bottom
row contains two plots that represent the Euclidean distance
of the 4 selected properties to the reference reconstruction.
Different data point were gathered by reconstructing with
varying λ in the case of SpBR-methods, where for SIRT this
is done by varying the number of iterations. The noise is
measured in the ROI depicted by the dashed ellipse in Fig.
11.

Here, shearlet-regularized reconstruction outperforms TV-
based reconstruction, for both the noisy as well as the fewer-
view dataset. TV is always closer to the reference than SH
on the contrast metric. Based on correlation, both methods
perform similarly independent of the dataset, though the same
correlation value is reached at higher noise for SpBR-SH
compared to SpBR-TV. A big difference can be found for
the energy property. Here, while SH estimates the energy
correctly, TV regularization removes the structure completely
and replaces it by homogeneous patches. This results in a
very high energy, which results in a high distance to the
reference texture. The same is visible to a lesser extent on
the homogeneity property.

Comparing both distance plots in the lowest row of Fig. 10,
the distance for the noisy dataset has a clear optimum for the
shearlet reconstruction. For noisy data, the texture obtained
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ref. SIRT

TV SH

Fig. 11. Reconstructions for the noisy dataset. Reconstruction images
matched on noise, measured in a ROI (dashed ellipse) on the liver.

with shearlet-based reconstruction is closer to the reference
than obtained with conventional SIRT reconstruction, at lower
noise. With fewer-view data, SpBR-SH outperforms SIRT.
When more regularization is applied, the distance to the
reference reconstruction increases, and this leads to a worse
texture than when normal SIRT is used. However, these low-
noise SIRT reconstructions are generated with only a few
iterations, which means the corresponding resolution will be
far worse than the converged SpBR-SH reconstructions.

Figure 11 shows reconstructions of the plastimouse for the
noisy dataset, comparing to the reference SIRT reconstruction
generated from the 33× averaged sinogram. The SIRT, SpBR-
TV and SpBR-SH reconstructions were selected with an equal
noise level (12%) by experimentally selecting the correct λ
value which gives this noise level at convergence for SpBR-
methods, and the early-stopping of SIRT when this noise level
was reached. Only SpBR-SH can accurately reconstruct the
small diagonal stripes seen in the left kidney (full arrow).
SpBR-TV exhibits patchiness which is especially visible on
object edges, and in the darker region on the right of the image
(dashed arrow). Edges are more smoothly reconstructed when
SpBR-SH is used. However, the darker region shows some
wavy artifacts when shearlets are used, compared to the blocky
structures encountered in the TV-based reconstruction.

The fewer-view dataset reconstructions are shown in Figure
12, matched to 10% noise in the liver ROI. Both SpBR-TV
and SpBR-SH have problems with reducing the noise in this
dataset while keeping the texture of the stomach intact. Both
methods still show a lot of aliasing artifacts, caused by the
4-fold undersampling of the data. For SpBR-SH, the aliasing
streaks have been sharpened in some places, while they have
been minimized in others. Small spots (full arrow) are better
visible on the TV-regularized reconstruction than with SpBR-
SH, where it has been smoothed away.

ref. SIRT

TV SH

Fig. 12. Reconstructions for the fewer-view dataset. Reconstruction images
matched on noise, measured in a ROI (dashed ellipse) on the liver.

VI. DISCUSSION

Replacing TV by shearlets for regularized reconstruction is
promising for iterative CT imaging in theory. We have shown
that shearlets do not lead to the piecewise-constant behavior
as seen with TV, but instead may lead to wavy artifacts, which
can be equally unwanted in medical diagnostics.

The noise-resolution tradeoff shows that SpBR-SH leads to
higher noise at the same resolution as obtained with SpBR-TV.
However, this could be due to the Gibbs effect also noticed in
Fig. 5. These wavy oscillations will be included in the noise
measurements, leading to a bias in the tradeoff curves. These
wavy lines are also visible on Fig. 9 and on the real data
presented in Fig. 11 and Fig. 12. They replace the patchy
artefacts of TV regularization.

Unfortunately, it is very difficult to quantitatively evaluate
the added usefulness from the medical diagnostic point of
view, as a ground-truth reference image will always be needed.
The most-used phantom in CT reconstruction evaluation is the
Shepp-Logan phantom, defined by adding 10 uniformly-filled
ellipses [13]. This makes it inherently piecewise constant.
Promising is the work done by Bond et al. [16], who have
developed a version of the XCAT phantom [27] with realistic
lung texture. However, it still needs to be expanded into 3D
texture. In our study presented here, we used a high-resolution,
realistically textured, plastinated mouse, so that the dataset
would not be biased towards TV.

Although the texture analysis on preclinical images im-
proved the outlook for shearlet-based regularization, it is
clear that there are still some issues. Although the shearlet
transform, like the curvelet transform, is suited for structures
representing sharp and elongated structures, e.g. edges, it is
unsuited for spherical-like sources (the point in the stomach
on Fig. 12 has been reconstructed less accurately in SpBR-
SH). This is a common issue with a lot of multi-resolution
techniques, as when they represent isotropic features well,
they are far from optimal for analyzing anisotropic objects
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[71]. This was the main idea behind the development of
other constructions, such as the curvelet transform [72]. It
could thus be beneficial to combine the shearlet transformation
with an isotropic wavelet transform. The sensitivity of each
transform to a particular shape would possibly make it a
very strong discriminating tool. However, the weights of the
transformations in this combination will depend on the specific
study.

Although the methods presented here have been applied to
fan-beam data, the techniques can be carried over to 3D cone-
beam data with no further adjustments. Indeed, no assumptions
have been made about the scanner geometry in the derivation
of the algorithms, and the optimization algorithms used can
be applied irrespectively from dimensionality. Although the
shearlet methodology can be extended to 3D directly [73], it
will suffer from large computational complexity due to the
use of multiple 3D FFTs and subsequent frequency domain
filtering (which has to be repeated for every iteration of the
split-Bregman algorithm). A possible alternative is a special
3D shearlet design based on separable filters in the spatial
domain. This is a topic of ongoing research. Even then, there
is still room to improve the existing algorithm, by using pre-
conditioned CG [74]. This would improve the reconstruction
time by reducing the number of CG iterations needed.

Future work could include the application of these devel-
oped techniques on different datasets together with numerical
observer studies, e.g. the channelized Hotelling observer [75],
[76], to compare different regularization strategies from the
medical diagnostic point of view.

VII. CONCLUSION

We have presented a split-Bregman based algorithm to per-
form iterative CT reconstruction, using shearlet regularization
as an alternative for TV minimization. The use of shearlets
for regularization leads to different artifacts than in the case
of TV, because shearlets model the structures contained in
the image using a different (non-piecewise constant) image
model. Based on a noise-resolution tradeoff study, TV mini-
mization outperforms shearlet-based reconstruction. However,
on acquired data with realistic textures, shearlets reconstruct
textures more similar to the reference texture than when TV
is used. The piecewise constant artifacts are gone, but have
been replaced by wave-like structures.
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APPENDIX

The following algorithm shows the pseudocode of the split-
Bregman algorithm for regularized CT reconstruction.
Require: d← 0,b← 0, C← diag(e−yi ), µ, λ.
Ensure: image x.

1: if Φ = Shearlet-transform then
2: u = Φ(1)
3: for s = 0→ scales(u) do
4: for i = 0→ size(u[s]) do
5: E[s][i] =

√∑size(u[s])
j=0 u[s][j]2

6: end for
7: end for
8: else
9: E = 1

10: end if
11: for 0→ iterations do
12: r←W†(C−1y) + (µ/λ)Φ(d− b)
13: p← r
14: new err ← r′ ∗ r
15: for 0→ cg iterations do
16: err ← new err
17: M←W†(C−1W(p)) + (µ/λ)Φ†(Φ(p))
18: α← err/(p′ ∗M)
19: x← x + αp
20: r← r− αM
21: new err ← r′ ∗ r
22: β ← new err/err
23: p← r + βp
24: end for
25: S = Φ(x)
26: k = S + b
27: for i = 0→ size(k) do
28: d[i]← sign (k[i]) ∗max(|k[i]| −E[i]/µ, 0)
29: end for
30: b← b + (S− d)
31: end for
32: return x

REFERENCES

[1] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, no. 1-4, pp. 259–268,
Nov. 1992.

[2] E. Y. Sidky, C.-M. Kao, and X. Pan, “Accurate image reconstruction
from few-views and limited-angle data in divergent-beam CT,” Journal
of X-Ray Science and Technology, vol. 14, no. 2, pp. 119–139, 2006.

[3] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam
computed tomography by constrained, total-variation minimization.”
Physics in Medicine and Biology, vol. 53, no. 17, pp. 4777–4807, Sep.
2008.

[4] E. Sidky, X. Pan, I. Reiser, R. Nishikawa, R. Moore, and D. Kopans,
“Enhanced imaging of microcalcifications in digital breast tomosynthesis
through improved image-reconstruction algorithms,” Medical Physics,
vol. 36, p. 4920, 2009.

[5] G. T. Herman and R. Davidi, “On Image Reconstruction from a Small
Number of Projections.” Inverse Problems, vol. 24, no. 4, pp. 45 011–
45 028, Aug. 2008.

[6] G.-H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed
sensing (PICCS): a method to accurately reconstruct dynamic CT im-
ages from highly undersampled projection data sets,” Medical Physics,
vol. 35, no. 2, pp. 660–663, 2008.

[7] H. Yu and G. Wang, “Compressed sensing based interior tomography.”
Physics in Medicine and Biology, vol. 54, no. 9, pp. 2791–2805, May
2009.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE 12

[8] J. Yang, H. Yu, M. Jiang, and G. Wang, “High-order total variation
minimization for interior tomography,” Inverse Problems, vol. 26, no. 3,
p. 035013, Feb. 2010.

[9] J. P. Oliveira, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Adap-
tative Total Variation Image Deblurring: A Majorization-Minimization
Approach,” Signal Process, vol. 89, pp. 1683–1693, 2009.

[10] A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems.” IEEE
transactions on image processing : a publication of the IEEE Signal
Processing Society, vol. 18, no. 11, pp. 2419–2434, Nov. 2009.

[11] Y. Meyer, Oscillating patterns in image processing and nonlinear
evolution equations, ser. Univ. Lecture Ser. 22. American Mathematical
Soc., 2001.

[12] W. Yin, D. Goldfarb, and S. Osher, “Total variation based image cartoon-
texture decomposition,” SIAM Journal on Multiscale Modeling and
Simulation, 2005.

[13] L. A. Shepp and B. F. Logan, “Reconstructing Interior Head Tissue from
X-Ray Transmissions,” IEEE Transactions on Nuclear Science, vol. 21,
no. 1, pp. 228–236, 1974.

[14] E. J. Candes, J. K. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete frequency
information,” Ieee Transactions on Information Theory, vol. 52, no. 2,
pp. 489–509, 2006.

[15] E. Garduño, G. T. Herman, and R. Davidi, “Reconstruction from a
Few Projections by L1-Minimization of the Haar Transform.” Inverse
Problems, vol. 27, no. 5, p. 055006, May 2011.

[16] J. Bond, D. Frush, E. Samei, and W. P. Segars, “Simulation of anatomical
texture in voxelized XCAT phantoms,” SPIE Medical Imaging Sympo-
sium, 2013.

[17] J. Tang, B. E. Nett, and G.-H. Chen, “Performance comparison between
total variation (TV)-based compressed sensing and statistical iterative
reconstruction algorithms,” Physics in Medicine and Biology, vol. 54,
no. 19, pp. 5781–5804, 2009.

[18] J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior
based iterative image reconstruction for retrospectively gated cardiac
micro-CT,” Medical Physics, vol. 34, no. 11, pp. 4476–4483, 2007.

[19] M. Lustig, D. L. Donoho, and J. M. Pauly, “Sparse MRI: The application
of compressed sensing for rapid MR imaging,” Magnetic Resonance in
Medicine, vol. 58, no. 6, pp. 1182–1195, 2007.

[20] H. Jung, K. Sung, K. S. Nayak, E. Y. Kim, and J. C. Ye, “k-t FOCUSS:
A general compressed sensing framework for high resolution dynamic
MRI,” Magnetic Resonance in Medicine, vol. 61, no. 1, pp. 103–116,
Jan. 2009.

[21] A. S. Carasso, “Singular integrals, image smoothness, and the recovery
of texture in image deblurring,” SIAM Journal on Applied Mathematics,
pp. 1749–1774, 2004.

[22] Y. Gousseau and J.-M. Morel, “Are natural images of bounded varia-
tion?” Siam Journal on Mathematical Analysis, vol. 33, no. 3, pp. 634–
648, 2001.

[23] A. Buades, B. Coll, and J.-M. Morel, “The staircasing effect in neighbor-
hood filters and its solution,” IEEE Transactions on Image Processing,
vol. 15, no. 6, pp. 1499–1505, 2006.

[24] F. Andreu, C. Ballester, V. Caselles, and J. M. Mazon, “Minimizing total
variation flow,” Differential and Integral Equations, vol. 14, no. 3, pp.
321–360, 2001.

[25] F. Andreu, V. Caselles, J. I. Diaz, and J. M. Mazon, “Some qualitative
properties for the total variation flow,” Journal of Functional Analysis,
vol. 188, no. 2, pp. 516–547, 2002.

[26] A. Chambolle and P. Lions, “Image recovery via total variation mini-
mization and related problems,” Numerische Mathematik, vol. 76, no. 2,
pp. 167–188, 1997.

[27] W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. W.
Tsui, “4D XCAT phantom for multimodality imaging research,” Medical
Physics, vol. 37, no. 9, p. 4902, 2010.

[28] G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk, “On the
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S. Vandenberghe, and S. G. Staelens, “Iterative CT reconstruction using
shearlet-based regularization,” Proc. of SPIE, pp. 1–7, 2012.

[45] F. Colonna, G. R. Easley, K. Guo, and D. Labate, “Radon transform
inversion using the shearlet representation,” Applied and Computational
Harmonic Analysis, vol. 29, no. 2, pp. 232–250, Sep. 2010.

[46] X.-C. Tai and C. Wu, “Augmented Lagrangian method, dual methods
and split Bregman iteration for ROF model,” Scale Space and Variational
Methods in Computer Vision, pp. 502–513, 2009.

[47] T. Goldstein and S. Osher, “The split Bregman method for L1 regularized
problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 323–
343, 2009.

[48] P. Gilbert, “Iterative methods for the three-dimensional reconstruction
of an object from projections,” Journal of Theoretical Biology, vol. 36,
no. 1, pp. 105–117, Jul. 1972.

[49] G. T. Herman and A. Lent, “Iterative reconstruction algorithms,” Com-
puters in Biology and Medicine, vol. 6, no. 4, pp. 273–294, Oct. 1976.

[50] A. Wunderlich and F. Noo, “Image covariance and lesion detectability
in direct fan-beam x-ray computed tomography.” Physics in Medicine
and Biology, vol. 53, no. 10, pp. 2471–2493, May 2008.

[51] K. D. Sauer and C. A. Bouman, “A local update strategy for iterative
reconstruction from projections,” Signal Processing, IEEE Transactions
on, vol. 41, no. 2, pp. 534–548, 1993.

[52] J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and
Recent Advances, 2nd ed. SPIE, 2009.

[53] J. Wang, A. Chai, and L. Xing, “Noise correlation in CBCT projec-
tion data and its application for noise reduction in low-dose CBCT,”
Proceedings of the SPIE, vol. 7258, pp. 72 582D1–8, 2009.

[54] H. Yu and G. Wang, “A soft-threshold filtering approach for reconstruc-
tion from a limited number of projections,” Physics in Medicine and
Biology, vol. 55, pp. 3905–3916, 2010.

[55] R. D. Nowak and M. A. T. Figueiredo, “Fast wavelet-based image
deconvolution using the EM algorithm,” in Proceedings of the 35th
Asilomar Conference on Signals, Systems, and Computers. Monterey,
CA: IEEE, Nov. 2001, pp. 371–375.

[56] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
munications on Pure and Applied Mathematics, vol. 57, no. 11, pp.
1413–1457, 2004.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE 13
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