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ABSTRACT

Multiscale statistical signal and image models resulted in major advances in many signal processing disciplines.
This paper focuses on Bayesian image denoising. We discuss two important problems in specifying priors for
image wavelet coefficients. The first problem is the characterization of the marginal subband statistics. Different
existing models include highly kurtotic heavy-tailed distributions, Gaussian scale mixture models and weighted
sums of two different distributions. We discuss the choice of a particular prior and give some new insights in
this problem. The second problem that we address is statistical modelling of inter- and intrascale dependencies
between image wavelet coefficients. Here we discuss the use of Hidden Markov Tree models, which are efficient in
capturing inter-scale dependencies, as well as the use of Markov Random Field models, which are more efficient
when it comes to spatial (intrascale) correlations. Apart from these relatively complex models, we review within
a new unifying framework a class of low-complexity locally adaptive methods, which encounter the coefficient
dependencies via local spatial activity indicators.

Keywords: Wavelets, Bayesian estimation, Markov Random Field models, Hidden Markov Tree models.

1. INTRODUCTION

Statistical modelling of image features at multiple resolution scales is a topic of tremendous interest for numerous
disciplines including image restoration, image analysis and segmentation, data fusion... A number of compre-
hensive publications on this subject include tutorials [1], special issues [2,3] and books [4]. Multiscale stochastic
signal and image models are usually linked to wavelet representation [5–8], which provides a natural framework
for multiresolution analysis. Here we focus on wavelet domain image denoising where different stochastic models
for wavelet coefficients are used within a Bayesian estimation approach.

1.1. Bayesian wavelet shrinkage
Noise reduction in the wavelet domain usually results from wavelet shrinkage: ideally, the coefficients that con-
tain primarily noise should be reduced to negligible values while the ones containing a “significant” noise-free
component should be reduced less. A common shrinkage approach is thresholding [9, 10], where the coeffi-
cients with magnitudes below a certain threshold are treated as “non significant” and are set to zero. The
remaining, “significant” coefficients are kept unmodified (hard-thresholding) or they are reduced in magnitude
(soft-thresholding).

Shrinkage estimators can also result from a Bayesian approach which imposes a prior distribution [11–13]
of noise-free data. The simplest Bayesian methods assume statistically independent data and rely on marginal
statistics only [14–19]. Others encounter prior knowledge about inter- and/or intrascale dependencies among
the coefficients as well, by using bivariate [20] or joint [21] statistics, by employing Hidden Markov Tree (HMT)
models [22–26] or Markov Random Field (MRF) models [27–30], or alternatively, by using some local (context)
measurements calculated from a surrounding of each coefficient [31–37]. Another possible categorization is
according to the optimization criterion employed, i.e., according to the adopted estimation rule. Here we recognize
at least three classes:

(i) methods that optimize the threshold selection for hard- and soft-thresholding [11, 12, 14, 15]. For example,
the soft thresholding method of [14], employs a threshold that is optimal in terms of mean squared error
under marginal subband statistics of natural images. Its spatially adaptive extension is in [31].
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wD
j,l wavelet coefficient: scale 2j , spatial position l and orientation D

wl wavelet coefficient at the position l in a given subband
yl noise-free coefficient value
ŷl an estimate of yl

ml significance measure for wl

xl hidden variable, binary label for wl

w, m, x vectors: detail image, significance map and mask, resp.
Wl, Ml, Xl random variables
W, M, X random vectors

∂l neighborhood of the pixel l
XA {xl : l ∈ A}

P (A = a|B = b) conditional probability of a given b
fY (y), f(y) probability density function of y
fW |X(w|x) conditional probability density function of w given x

Table 1. Nomenclature.

(ii) estimators that result from minimizing a Bayesian risk, typically under a quadratic cost function (minimum
mean squared error - MMSE estimation [16–18,20,38]) or under a delta cost function (maximum a posteriori
- MAP estimation [19]). Spatially adaptive extensions of such estimators are, e.g., [22–24,32–36].

(iii) methods that multiply each wavelet coefficient with the probability that it contains a significant noise-free
component (given a set of measurements calculated from the empirical coefficients) [27–30,37]. Like hard-
or soft-thresholding functions, such a shrinkage rule seems rather ad-hoc but is also intuitively appealing
and effective in practice. A recent more extensive analysis of this type of estimators is in [39].

1.2. Notation and Noise Model
In the sequel, we use the following notation: a wavelet coefficient wD

j,l represents the bandpass content of an
image at resolution scale 2j , spatial position l and orientation D. Whenever there can be no confusion, we omit
the indices that denote the scale and the orientation. Random variables are denoted by capital letters and their
realizations by the corresponding small letters. Boldface letters are used for vectors. A detail image (wavelet
subband) is represented as w = {w1, ..., wn}, where the set of indices L = {1, ..., n} is a set of pixels on a
regular rectangular lattice. We shall often assign a significance measure ml and a binary label xl to each wavelet
coefficient wl. For example, the label value xl = 0 denotes that wl represents mainly noise, and the value xl = 1
denotes that wl is a “significant” coefficient. A set of these labels x = {x1, ..., xn} is called mask, while the set
of significance measures m = {m1, ...,mn} is called significance map. The nomenclature is in Table 1. We often
abbreviate the probability density function by density.

Unless otherwise stated, we assume additive white Gaussian noise: wl = yl + nl, where yl is the noise-
free coefficient component and nl are independent, identically distributed zero mean normal random variables
N(0, σ2). An orthogonal wavelet transform maps the white noise in the input image into a white noise in the
wavelet domain. In this case, the noise standard deviation in each detail image is equal to the standard deviation
of the input noise σ. In a non-decimated representation the noise contributions nl are not independent and the
noise standard deviation σD

j depends on the resolution level j and on the subband orientation D.

Only in Sections 4.2 and 4.3 we illustrate the suppression of other than Gaussian noise types.

1.3. Contents and structure
In Section 2 we discuss different marginal priors for noise free subband data. Denoising approaches based on
HMT and MRF models are discussed in Section 3. Here we outline the main ideas, as well as conceptual
differences and similarities between these methods. In Section 4, we review within a new unifying framework a
low-complexity locally adaptive approach, which encounters the coefficient dependencies via local spatial activity
indicators. The conclusions are in Section 5.



noise-free detail histogram GL model

Figure 1. An illustration of the generalized Laplacian (GL) prior for noise-free wavelet coefficients.

2. MARGINAL STATISTICS OF IMAGE WAVELET COEFFICIENTS

In a wavelet decomposition of a noise-free image many wavelet coefficients come from relatively smooth regions
and are thus quite small, while others corresponding to edges can be very large. Hence, as discussed by many
authors (e.g., [6, 18, 19, 21, 22, 32]) the distribution of noise-free wavelet coefficients in each subband is sharply
peaked at zero and heavy tailed.

2.1. Heavy tailed distributions

A common marginal prior for noise-free subband data is generalized Laplacian (also called generalized Gaussian
distribution) [14,18,40]

f(y) =
ν

2sΓ( 1
ν )

exp(−|y/s|ν), s, ν > 0 (1)

where Γ(x) =
∫ ∞
0

tx−1e−tdt is the Gamma function. For natural images, the shape parameter is typically
ν ∈ [0, 1]. The variance and the courtosis of a generalized Laplacian signal are [18] σ2

y = s2Γ( 3
ν )/Γ( 1

ν ), and
κy = Γ( 1

ν )Γ( 5
ν )/Γ2( 3

ν ), respectively. The model parameters s and ν are accurately estimated from a signal
corrupted by additive white Gaussian noise [18].

A special case in the family (1), with ν = 1 (the so-called Laplacian or double exponential) is often used
because of its analytical tractability [19, 38] since it usually does not produce a noticeable degradation in per-
formance. The MAP estimation under the Laplacian prior yields a soft-thresholding function with the threshold√

2σ2/σy [19]. The MMSE estimate is derived in [38]. Other heavy tailed distributions of wavelet coefficients
have been proposed for specific types of images, like, e.g., the Pearson distributions for SAR images in [41], and
the α-stable distributions for medical ultrasound images in [42].

2.2. Mixture priors

As compared to generalized Laplacian model, mixture priors [13,15,16,32,35] often yield a reduced computation
complexity of a Bayesian estimator. Moreover, as we show next, mixture priors also offer an elegant way for
adapting a Bayesian estimator to the surrounding of each coefficient.

2.2.1. Gaussian scale mixtures

A Gaussian scale mixture prior [32–35] models each coefficient as the product of two independent random
variables: y =

√
zu, where z is a positive scalar and u is an element of a Gaussian random field. The multiplier

z is usually a function of the surrounding coefficient values (like the local variance of the coefficients within
the same scale [32] or a more complex function of the neighboring coefficients within the same and adjacent
scales [34,35]). The MMSE estimate with such priors takes the form of a locally adaptive Wiener-like estimator.



Figure 2. (a) A mixture of two normals: fY |X(y|0) = N(0, σ2
0), fY |X(y|1) = N(0, σ2

1). (b) A Laplacian mixture:

fY |X(y|0) ∝ e−λ|y| for |y| ≤ T otherwise zero; fY |X(y|1) ∝ e−λ|y| for |y| > T otherwise zero;

2.2.2. Weighted mixtures of two distributions

Another common class of mixture priors, are superpositions of two distributions, where one distribution models
the statistics of “significant” (“high energy” or “important”) coefficients and the other distribution models
the statistics of “non-significant” coefficients and where the mixing parameter is a Bernoulli random variable
[12, 13, 15–17, 22–24]. Within this framework, common models are the mixture of two normals [16, 22–24] and a
mixture of a normal distribution and a point mass at zero [15, 17]. A systematic overview of these and related
models is in [12]. The marginal prior of [38] is a mixture of a point mass at zero and the Laplacian distribution.
In a sense, a generalization of this prior is in [30], where the distribution of “significant” coefficients is described
by the tails of a Laplacian and the distribution of “non significant” coefficients by the central (low-magnitude)
part of the same distribution. We can write a unifying form for the above mixture priors as:

f(y) = P (X = 0)fY |X(y|0) + P (X = 1)fY |X(y|1), (2)

where X is a Bernoulli random variable with P (X = 1) = p = 1−P (X = 0), and where fY |X(y|0) and fY |X(y|1)
are the densities of “non significant” and “significant” noise-free coefficients, respectively. In some approaches,
P (X = 1) is estimated per subband [16], while it is in others estimated adaptively for each coefficient using e.g.,
HMT modelling framework [22–24] (Section 3.1), using MRF modelling framework [27–30] (Section 3.2) or by
conditioning the probability of signal presence on a local spatial activity indicator [37] (Section 4).

Under the prior (2), the minimum mean squared error estimate of the noise-free coefficient value is

E(y|w) = P (X = 0|w)E(y|w,X = 0) + P (X = 1|w)E(y|w,X = 1). (3)

Using the Bayes’ rule one can show that P (X = 1|y) = µξ/(1+µξ), where µ = P (X = 1)/P (X = 0) is the prior
ratio and ξ = fY |X(y|1)/fY |X(y|0) is the likelihood ratio.

2.3. Comments on the choice of a marginal prior

The choice of a marginal prior is a crucial step for designing a Bayesian denoising method. Even methods that
encounter inter- and intrascale dependencies as well, usually build on a given marginal prior for subband data.

The mixture of two normals is attractive due to its analytical tractability. MMSE estimates based on this prior
are of simple and elegant form. In particular, if we denote fY |X(y|0) = N(0, σ2

0) and fY |X(y|1) = N(0, σ2
1), the

conditional means are E(y|w,H0) = σ2
0/(σ2

0 +σ2
1)w and E(y|w,H1) = σ2

1/(σ2
0 +σ2

1)w. However, this model is not
truly heavy-tailed. Since it involves three parameters (two mixing variances and the probability p = P (X = 1))
the parameter estimation can present a substantial problem unless they are fixed per subband (like in [16]).

The mixture model from Fig. 2(b) has a natural interpretation: “significant” are the noise-free coefficient
magnitudes above a certain threshold while the others are “non significant”. Their statistical distributions
follow a realistic, Laplacian model. Following the optimum coefficient selection principle [7, 28], the threshold
T that defines a significant magnitude should equal the noise standard deviation T = σ. This leaves only one
parameter of the mixture prior. It was shown in [39] that if this parameter is fixed per subband and equal to



Figure 3. A schematic representation of (a) the multiscale stochastic process on a quadtree used in [44]; (b) the HMT
model of [22] and (c) the Local contextual hidden Markov model of [24].

p = exp(−σ/s)/(1− exp(−σ/s)), the mixture prior reduces to the Laplacian. The main interest is in estimating
the probability P (X = 1) adaptively for each coefficient, rather than fixing it per subband. In such a context, the
Laplacian mixture prior was used in a MRF based method [30] (see Fig. 5), but not within MMSE estimation.
The latter is possible too, and the required conditional means E(y|w,H0) and E(y|w,H1) are derived in [39].

Using Gaussian scale mixtures, one can obtain a great variety of truly heavy-tailed distributions [35]. Such
models also offer an elegant framework for constructing spatially adaptive estimators that range from low-
compexity ones [32] to highly sophisticated ones like [35].

As a final remark, it is interesting to note that the use of mixtures of two distributions (2) seems particularly
attractive for applications where in addition to the noisy data some other sources can be used to locate the image
edges (like in case of hyperspectral data and other multivalued images). In such applications the probability p
that a coefficient at a given spatial position represents a significant edge can be based on data fusion.

3. MODELLING INTER- AND INTRASCALE DEPENDENCIES
A theoretic study of inter- and intrascale dependencies among the wavelet coefficients is in [43]. The Hidden
Markov Tree (HMT) models are extensively used in recent wavelet denoising literature, e.g., [22–26]. Use of
Markov Random Field (MRF) models for spatial clustering of the coefficients [27–30] has been considerably less
studied. This Section outlines the main ideas, differences and similarities between these approaches.

3.1. Hidden Markov Tree (HMT) models
Interscale (“parent - child”) dependencies among the wavelet coefficients in a decimated wavelet representation
are naturally modelled on a quadtree structure. Due to downsampling, each coefficient at the scale 2j corresponds
to four coefficients at the next finer scale 2j−1. Multiscale stochastic processes on quadtrees are studied, e.g.,
in [44–46], where the wavelet coefficients are modeled using Markov relationships of the type “parent - child”
on a quadtree (see Fig. 3(a)). Hidden Markov Tree (HMT) models [22–25] establish similar relationships among
the hidden state variables rather than among the coefficients themselves (see Fig. 3(b)).

HMT models of [22–24] build on the marginal prior of [16], which is a mixture of two normals (Section 2.2.2).
With each wavelet coefficient wl a hidden state random variable Xl is associated, where xl ∈ {0, 1} and where
xl = 1 denotes that wl contains a large noise-free component, while xl = 0 denotes the opposite. This hidden
variable describes the random choice of which mixture component is used for the particular wavelet coefficient.
The prior model is a locally adaptive version of (2): f(yl) = p0

l N (0, σ2
0,l) + p1

l N (0, σ2
1,l), with p1

l = P (Xl = 1),
and p0

l = 1 − p1
l . In addition, each parent-child state-to-state link has a corresponding state transition matrix

Al =
[

p0→0
l p0→1

l

p1→0
l p1→1

l

]
(4)



Figure 4. Interactions among the attached (hidden) variables in a MRF based approach. A significance measure that is
attached with each wavelet coefficient can be computed from several scales.

with p0→1
l = 1 − p0→0

l and p1→0
l = 1 − p1→1

l . The parameters p0→0
l and p1→1

l are the persistency probabilities,
while p0→1

l and p1→0
l are called the novelty probabilities, for they express the probability that the state values

will change from one scale to the next [23]. The HMT model is specified in terms of (1) the mixture variances
σ2

l,0 and σ2
l,1; (2) the state transition matrices Al and (3) the probability of a large state at the root node.

These parameters are grouped in a vector Θ. The conditional mean of yl given the noisy value wl and given the
parameter vector Θ is

ŷl = E(yl|wl,Θ) =

(
P (Xl = 0|wl,Θ)

σ2
l,0

σ2 + σ2
l,0

+ P (Xl = 1|wl,Θ)
σ2

l,1

σ2 + σ2
l,1

)
wl (5)

where σ is the noise standard deviation. The required probabilities are estimated by “upward-downward”
algorithms through the tree, and using model training procedures detailed in [22]. Commonly mentioned problems
are: (1) a large number of unknown parameters (implies simplifications such as parameter invariance within the
scale) (2) convergence can be relatively slow [23] and (3) lack of spatial adaptation - the links in the quadtree
from Fig. 3(b) do not capture the intrascale dependencies. In this respect, a local contextual HMT model
of [24] is an improvement: an additional hidden state is attached to each coefficient; this additional hidden
variable is a function of the surrounding wavelet coefficients, as illustrated in Fig. 3(c). The actual “interactive
communication” between the state variables is still in the vertical direction only and not within the scale.

3.2. Markov Random Field (MRF) models for spatial clustering

In [27–30] a methodology is developed for image denoising based on Markov Random Field models for spatial
clustering of image wavelet coefficients. In these approaches, a bi-level MRF model encodes “geometry” of detail
images by giving preference to spatially connected configurations of large wavelet coefficients.

To make a parallel with the HMT models, here a binary hidden variable xl is also attached with each
coefficient wl, where xl = 1 again denotes that wl contains a significant noise-free component and xl = 0 denotes
the opposite. In contrast to HMT models, the interactions among the hidden variables are now horizontal, i.e.,
within the scale. In particular, the vector of binary labels x = [x1, ..., xn] for all the coefficient within a given
detail image is called a mask and each possible mask is assumed to be a realization of a Markov Random Field
X. In a Markov Random Field the probability of a pixel label, given all other pixel labels in the image, reduces
to a function of neighboring∗ labels only [47]. A set of pixels, which are all neighbors of one another is called a
clique†. The joint probability P (X = x) of a MRF is a special case of the Gibbs distribution exp(−H(x)/T )/Z,

∗Most often used are the so-called first-order neighborhood (four nearest pixels) and the second-order neighborhood
(eight nearest pixels).

†For example, for the first-order neighborhood cliques consist of one or two pixels, and for the second order neighbor-
hood cliques consist of up to four pixels.



with partition constant Z and temperature T , where the energy H(x) can be decomposed into contributions of
clique potentials VC(x) over all possible cliques:

P (X = x) =
1
Z

exp
(
− 1

T

∑
C∈C

VC(x)
)
. (6)

The clique potential VC(x) is a function of only those labels xl, for which l ∈ C. One defines the appropriate
clique potential functions to give preference to certain local spatial dependencies, e.g., to assign higher prior
probability to edge continuity. Now we can summarize the essence of denoising methods [27–30] as follows.

1. Assign to each detail image (i.e, to each wavelet subband) w = [w1, ..., wn]

• a vector of significance measures called significance map: m = [m1, ...,mn] and
• a vector of binary labels (hidden variables) x = [x1, ..., xL] called mask.

2. Impose a MRF prior on masks and shrink each wavelet coefficient according to probability that it presents
a significant signal given the significance map for the whole detail image. In particular,

ŷl = P (Xl = 1|M = m)wl. (7)

The exact computation of the marginal probability P (Xl = 1|M = m) is intractable, because it requires the
summation of the posterior probabilities P (X = x|M = m) of all possible configurations x for which xl = 1. In
practice one estimates the required probabilities by using a relatively small, but “representative” subset of all
possible configurations. Such a representative subset is obtained by importance sampling : the probability that
a given mask is sampled is proportional to its posterior probability. An estimate of P (Xl = 1|M = m) is the
fraction of all sampled masks for which xl = 1. In [27–30] the Metropolis sampler is used, which starts from a
given initial mask and generates from each configuration x, a new, “candidate” mask xc by switching the binary
label at a random position l. The decision about accepting the change is based on the ratio r of the posterior
probabilities of the two configurations r = P (xc|m)/P (x|m) = fM|X(m|xc)P (xc)/(fM|X(m|x)P (x)). Under
the conditional independence assumption fM|X(m|x) =

∏
l f(ml|xl) the posterior probability ratio reduces to

r =
fMl|Xl

(ml|xc
l )

fMl|Xl
(ml|xl)

exp
( ∑

C∈Cl

VC(x) −
∑
C∈Cl

VC(xc)
)
. (8)

where Cl is the set of cliques that contain pixel l. When r > 1 the candidate xc is accepted and if r < 1, the
change is accepted with probability r. In practice, ten iterations suffice to estimate P (Xl = 1|M = m) from (7).

3.2.1. Significance measures and their statistics

A significance measure ml is supposed to tell us how significant the wavelet coefficient wl is, i.e., to give an
indication how likely is it that wl represents an actual discontinuity rather than being dominated by noise. An
obvious and simple choice is the coefficient magnitude ml = ωl = |wl|. If “significant” noise-free coefficient is
defined as |yl| > T , where T is some threshold, then fΩl|Xl

(ωl|0) and fΩl|Xl
(ωl|1) follow from the conditional

densities in Fig. 2(b) as follows: fWl|Xl
(wl|0) = fYl|Xl

(yl|0) ∗N(0, σ2) and fWl|Xl
(wl|1) = fYl|Xl

(yl|1) ∗N(0, σ2);
fΩl|Xl

(ωl|xl) = 2fWl|Xl
(wl|xl), ωl > 0. An illustration of these densities, for different σ, is in Fig. 5.

One can also define a significance measure based on the propagation of the wavelet coefficients across scales:
it is well known that the coefficients that die out swiftly as the scale increases are likely to represent noise [49].
In this respect, ml can be defined as an estimate of the local Lipschitz regularity [27, 48] or as an interscale
product [50] at the corresponding spatial position. A rough estimate of the local Lipschitz regularity at position
l is Average Cone Ratio (ACR) [30]. If we denote by C(j, l) the discrete set of wavelet coefficients at the resolution
scale 2j , which belong to the directional cone of influence (Fig. 6(a)) of the spatial position l, then ACR between
the scales 2n and 2k, 0 < n < k is

βn→k, l � log2

( 1
k − n

k−1∑
j=n

|Ij+1,l|
|Ij,l|

)
, Ij,l �

∑
m∈C(j,l)

|wj,m|, (9)



Figure 5. Empirical conditional densities of coefficient magnitudes from [30] that can be also derived analytically from
the prior in Fig. 2(b).

(a) (b) (c)

Figure 6. (a) Directional cone of influence in [30,48]. It is support of wavelets in different scales with direction indicated
by the wavelet transform angle at a given point. (b) Conditional densities of ACR β1→3, l from [30]. (c) Contour plots of
joint conditional densities fMl|Xl

(ml|0) and fMl|Xl
(ml|1), for ml = (|wl|, β1→3, l) from [30].

and it presents an estimate of α + 1, where α is the local Lipschitz regularity (for details, see [30,48]). Fig. 6(b)
illustrates the conditional densities of ACR, given noise and given useful signal. In [30], a joint significance
measure mj,l = (|wl|, β1→j+1, l) was defined. Its empirical conditional densities fMl|Xl

(ml|0) and fMl|Xl
(ml|1),

illustrated in Fig. 6(c), were shown to be approximated well by the product of the corresponding one dimensional
densities from Fig. 5 and Fig. 6(b).

3.2.2. Specification of the MRF prior

A number of different MRF models [47] can be used to express the prior mask probability P (X = x), but the
complexity of realization is an important thing to bear in mind. In [27], an isotropic MRF model, with the second
order neighborhood was used. An anisotropic MRF model of [30] is slightly more complex but it preserves image
details significantly better. The idea behind this model is the following: for each spatial position l, define a given
number of oriented sub-neighborhoods, which contain possible micro-edges centered at the position l. The label
value xl = 1 (edge label) should be assigned a high probability if any of the oriented sub-neighborhoods indicates
the existence of an edge element in a certain direction. On the contrary, the non-edge label should be assigned
a high probability only if no one of the sub-neighborhoods indicates the existence of a such edge element. The
sub-neighborhoods Nl,i, 1 ≤ i ≤ 5 are shown in Fig. 7: each Nl,i contains four neighbors of the central pixel l.
The expression

∑
C∈Cl

VC(x) that appears in (3.2), for the model of [30] with the label set xl ∈ {−1, 1} becomes
∑
C∈Cl

VC(x) = −γ xl max
i

{ ∑
k∈Nl,i

xk

}
, (10)

where γ is a positive constant. Fig. 8 illustrates the operation of the Metropolis sampler with this prior and
Fig. 9 compares image denoising using the above described MRF-based approach to Wiener filtering.



Figure 7. The sub-neighborhoods in the MRF model of [30].

Figure 8. Left to right: noisy image, initial mask and the results of the first three iterations of the Metropolis sampler
using the joint conditional model from Fig. 6(c) and the MRF prior with clique potentials in Eq (10).

3.2.3. An alternative to stochastic sampling

As an alternative to the shrinkage rule (7) consider now

ŷl = P (Xl = 1|M = m,XL\l = x̂L\l)wl. (11)

It was shown in [51] that contrasting P (Xl = 1|M = m), the marginal probability P (Xl = 1|M = m,XLl = x̂Ll)
which is conditioned not only on the significance map m but also on the estimated labels at all positions except l,
can be expressed as a closed form function of ml and the neighboring labels x̂∂l. In particular, if the conditional
independence fM|X(m|x) =

∏
l fMl|Xl

(ml|xl) holds (as was assumed in Section 3.2 as well) then [47]

P (Xl = xl|M = m,XL\l = xL\l) = ApMl|Xl
(ml|xl)P (Xl = xl|X∂l = x∂l), (12)

where A does not depend on xl. Using (12) and observing that P (Xl = 0|m, x̂L\l) + P (Xl = 1|m, x̂L\l) = 1, the
shrinkage rule (11) becomes [51]

ŷl =
ξlµl

1 + ξlµl
wl, (13)

where ξl is the likelihood ratio and µl is the ratio of prior probabilities:

ξl =
fMl|Xk

(ml|1)
fMl|Xl

(ml|0)
and µl =

P (Xl = 1|x̂∂l)
P (Xl = 0|x̂∂l)

=
P (Xl = 1|tl)
P (Xl = 0|tl) , (14)

where tl is a function of label estimates from x̂∂l = {x̂k : k ∈ ∂l}. For the isotropic auto-logistic MRF model
with pairwise cliques only, one can show that µl = exp(γtl), with tl =

∑
k∈∂l(2x̂k − 1).

In this approach, instead of using the stochastic sampling, the mask x̂ can be estimated using a fast subopti-
mum method like iterated conditional modes [47] in a few iterations only. The measurement tl can be interpreted
as a local spatial activity indicator, which changes the amount of smoothing for a given significance measure
depending on the presence of edge-components in a given neighborhood.

4. LOW COMPLEXITY METHODS, HEURISTICS AND EMPIRICAL ESTIMATION

Many authors have used a local measurement such as the locally averaged coefficient magnitude or the local
variance in order to refine thresholding [31] and Wiener based estimators (see [32] and the references therein).
Here we treat a class of related methods that use the estimator of the form (13), but now beyond MRFs and
with more general types of local spatial activity indicators. These algorithms still fit in a Bayesian framework,
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Figure 9. A result of a wavelet domain MRF method [30] (MRF-WAV) compared to spatially adaptive Wiener filter.

but they also involve heuristics and empirical estimation of the data distributions. Consider a variant of the
shrinkage rule (13) with

ξl =
fΩl|Xk

(ωl|1)
fΩl|Xl

(ωl|0)
and µl =

P (Xl = 1|zl)
P (Xl = 0|zl)

. (15)

where ml from (14) is now chosen as the coefficient magnitude, denoted by ωl and where a discrete local spatial
activity indicator (LSAI) tl from (14) is now generalized by zl. Here zl denotes an arbitrary, but well chosen
function of the neighboring labels (discrete LSAI) or a function of the neighboring coefficients {wk : k ∈ ∂l}
(continuous LSAI). With this formulation, (13) and (15) provide a heuristically appealing and flexible framework
for constructing different denoising methods that are adapted to the data statistics and to the local spatial
context, and that have proved effective in different applications including medical imaging [37] and remote
sensing [52]. A theoretical motivation also exist: related estimators are widely used in spectral amplitude
estimation of speech and image signals [53] where they were also motivated in terms of optimum simultaneous
detection and estimation of signals from noise [54].

4.1. Empirical density estimation

In some cases one can develop the estimator given by (13) and (15) analytically, starting e.g., from the mixture
prior in Fig. 2(b) (an example is in [39]). In other cases where, e.g., different noise types are considered, or when
the notion of “significant” image features is subject to expert-interaction (which can be advantageous in medical
images) or in cases where conditional densities of some arbitrary defined local spatial activity indicators are
required, the empirical estimation is required. In [37,52] an empirical density estimation is based on a preliminary
coefficient classification. In particular, a non-decimated transform is used and the positions of “significant”
coefficients are estimated using a coarse-to fine procedure: already processed, coarser detail coefficients ŷl,j+1 at
the scale 2j+1, are used to better detect the important ones at the scale 2j . For each orientation we have

x̂j,l =
{ 0, when |wl,j ||ŷl,j+1| < (Kσ̂j)2,

1, when |wl,j ||ŷl,j+1| ≥ (Kσ̂j)2,
(16)

where σ̂j is an estimate of the noise standard deviation at the resolution scale 2j and K is a parameter, which
controls the notion of the “signal of interest”. K can be set to a fixed value or in some sensitive applications,
like medical ultrasound, a user interaction may be preferred. Having the estimate x̂ = {x̂1...x̂n}, let

S0 = {l : x̂l = 0} and S1 = {l : x̂l = 1}. (17)

The normalized histograms of {ωl : l ∈ S0} and {ωl : l ∈ S1} are the empirical estimates of the densities
fΩl|Xl

(ωl|0) and fΩl|Xl
(ωl|1), respectively. From thereon, at least two strategies are possible, as it is depicted in

Fig. 10. If the functional form of the involved densities is unknown, one can perform a piece-wise linear fitting of
the log-ratio (Section 4.2). Otherwise, one can apply the maximum likelihood estimation of the model parameters
from the corresponding histograms (Section 4.3).
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Figure 10. Empirical density estimation using a preliminary coefficient classification.
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Figure 11. Denoising ultrasound and magnetic resonance images (MRI) using the method of [37].

4.2. An algorithm for medical images

A representative of this approach is the algorithm of [37]. The local spatial activity indicator is there defined as
the locally averaged coefficient magnitude and µl from (15) is expressed as

µl =
P (Xl = 1|zl)
P (Xl = 0|zl)

=
fZl|Xl

(zl|1)P (Xl = 1)
fZl|Xl

(zl|0)P (Xl = 0)
(18)

yielding from (13)

ŷl =
ρξlηl

1 + ρξlηl
wl, (19)

where

ξl =
fΩl|Xk

(ωl|1)
fΩl|Xl

(ωl|0)
, ηl =

fZl|Xk
(zl|1)

fZl|Xl
(zl|0)

, and ρ =
P (Xl = 1)
P (Xl = 0)

. (20)

The likelihood ratios ξl and ηl are estimated from the noisy image using (16) followed by a piece-wise linear
fitting of the log-likelihood ratios (see Fig. 10). P (Xl = 1) is estimated by a fraction of estimated labels 1,
yielding ρ =

∑n
l=1 x̂l/(n − ∑n

l=1 x̂l), where n is the number of the coefficients in a given subband. Fig. 11
illustrates the application of this method to medical ultrasound brain images and to magnetic resonance images
of human brain.



Figure 12. Empirical density estimation of [52] for the SAR image from Fig. 13. Top: detected masks. Middle row:
empirical histograms and fitted models for fΩ|X(ω|0). Bottom: empirical histograms and fitted models for fΩ|X(ω|1).

4.3. Algorithm for SAR image despeckling

A related algorithm of [52] for despeckling Synthetic Aperture Radar (SAR) images employs the estimator (13)
using the discrete local spatial activity from (14). As the previous one, this method employs an empirical density
estimation according to (16) and Fig. 10, but using now functional forms of the involved densities. It was
observed in [52] that in SAR images, the coefficient magnitudes dominated by speckle noise follow well a scaled
exponential density, while those dominated by image transitions follow well scaled Gamma densities, i.e.,

fΩl|Xl
(ω|0) � (1/a) exp(−ω/a) and (21)

fΩl|Xl
(ω|1) � (1/2b)(ω/b)2 exp(−ω/b).

It can be shown (see [55]) that the maximum likelihood estimates of these parameters are: â = (1/N0)
∑

i∈S0
ωi

and b̂ = (1/3N1)
∑

i∈S1
ωi, where the sets S0 and S1 are defined in (17) and N0 and N1 denote the cardinalities of

S0 and S1, respectively. An example in Fig. 12 illustrates the coarse-to-fine preliminary coefficient classification
according to (16) and the the estimated conditional densities of the coefficient magnitudes. Denoising results
in Fig. 13 and Fig. 14 demonstrate that this method preserves the point scatterers remarkably well and that it
visually outperforms the Gamma map filter [56], which is one of the best state of the art speckle filters.

5. CONCLUSIONS

We discussed different multiscale statistical image models in the framework of Bayesian image denoising. The
choice of a marginal prior is a crucial step for designing a Bayesian denoising method. We discussed different
heavy tailed and mixture priors from the viewpoint of complexity and flexibility in applications. We remarked
that the use of mixtures of two distributions (2) seems particularly attractive for applications where in addition
to the noisy data some other sources can be used to locate the image edges (like in case of multivalued images).



Figure 13. Original SAR image (left) and the result of the wavelet domain filter [52] (right)

Figure 14. Original SAR image (left), wavelet based filter [52] (middle) and the Gamma MAP filter [56] (right).

HMT and MRF approaches were briefly outlined, where we through some new and original illustrations em-
phasized the main conceptual differences and similarities between these approaches and where we also discussed
how these models build on the chosen marginal priors. Finally, we reviewed a class of low-complexity locally
adaptive methods within a new, unifying framework, drawing also some parallels between these methods and the
MRF-based ones. Potentials of denoising methods that employ local spatial activity indicators and the empirical
density estimation was illustrated on different real world images: ultrasound, MRI and SAR.
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