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Abstract

We develop a new filter which combines spatially adap-
tive noise filtering in the wavelet domain and temporal fil-
tering in the signal domain. For spatial filtering, we pro-
pose a new wavelet shrinkage method, which estimates how
probable it is that a wavelet coefficient represents a “sig-
nal of interest” given its value, given the locally averaged
coefficient magnitude and given the global subband statis-
tics. The temporal filter combines a motion detector and
recursive time-averaging. The results show that this combi-
nation outperforms single resolution spatio-temporal filters
in terms of quantitative performance measures as well as in
terms of visual quality. Even though our current implemen-
tation of the new filter does not allow real-time processing,
we believe that its optimized software implementation could
be used for real- or near real-time filtering.

1 Introduction

Video denoising is important in numerous applications,
including restoration of old movies, television broadcast-
ing systems, teleconferencing and video surveillance. In
surveillance applications video cameras often operate in
bad-lighting conditions, which may yield extremely noisy
video output. Not only the noise produces unpleasant per-
ceptual effect, but in certain extreme cases it can even se-
riously hamper the interpretation of the video content. De-
velopment of advanced video denoising schemes is thus es-
sential for a consumer-grade visual quality. Due to con-
strains of real-time implementation current video denoising
schemes are mostly confined to relatively simple spatio-
temporal filters [1–5]. While achieving the required com-
putational speed, these filters usually cannot suppress noise
sufficiently without blurring edges and other image discon-
tinuities.

The wavelet transform [6–8] as a tool for a multireso-
lution analysis facilitates noise removal from signals and

images without excessive smoothing of actual discontinu-
ities. For denoising still images, numerous wavelet based
filtering techniques were proposed, e.g., [9–23], and proved
their advantages over standard single-resolution filters. In
contrast to still images, wavelet based denoising for video
is much less studied so far, due to real-time processing con-
straints. However, wavelet-based video compression and
coding techniques are becoming increasingly popular [24]
and multimedia trends indicate that the next generation of
videocoders will be based on wavelets. Given these trends
it is to be expected that wavelet-based video denoising will
soon be implementable in real-time as well.

The primary goal of this study is to investigate how big
an improvement can be expected from using wavelet based
video denoising instead of standard spatio-temporal filters.
Despite the importance of this issue, to our knowledge, such
studies did not appear in literature yet. Here we first in-
troduce a new spatially adaptive wavelet domain image de-
noising method. Like in [10, 16], we use a measurement
computed from a local window around each coefficient in
order to adapt the estimator to the spatial context in the im-
age. We call this measurement local spatial activity indica-
tor (LSAI). The novelty of our approach is that we combine
the coefficient value, the value of LSAI and the global coef-
ficient histogram to compute the generalized likelihood ra-
tio and to estimate accordingly the probability that a given
coefficient represents a signal of interest, where the notion
of the signal of interest is related to the noise level. The
proposed method is an extension of our work [19], in the
sense that the empirical parameter estimation from [19] is
now replaced by analytical expressions.

We analyze the use of the proposed wavelet domain de-
noising method within the following two scenarios: (1) de-
noising individual video frames in the wavelet domain and
(2) combining wavelet based image denoising and tempo-
ral filtering. For comparison, as representatives of single
resolution spatio-temporal filters we use a well established
3D rational filter of [1], and the recently proposed 3D KNN
(K-Nearest Neighbors) filter of [5].



Our results demonstrate that even though wavelet based
denoising of individual frames can suppress noise remark-
ably well in each frame, the visual quality of the resulting
video is often not satisfactory. This is due to the fact that
the residual noise as well as inevitable degradations and de-
noising artifacts differ from frame to frame, which causes
an unpleasant visual effect. To overcome this problem, we
combine wavelet domain denoising with simple temporal
filtering. Our temporal filter is based on a simple pixel-
based motion detector and on selective recursive time aver-
aging of the spatially filtered frames. At the positions where
motion is detected, the recursive filter resets, preventing in
this way edge blurring. The new 3D filter yields a better vi-
sual quality and much higher signal-to-noise ratio than the
single-resolution 3D filters from [1] and [5].

The paper is organized as follows. In Section 2, the
wavelet transform and wavelet based denoising are re-
viewed. In Section 3, the proposed two dimensional (2D)
wavelet denoising method is described and its performance
on video is demonstrated. In Section 4, a new 3D filter,
which combines wavelet denoising with temporal filtering
is described and its results are presented and discussed. The
concluding remarks are in Section 5.

2 Wavelet domain noise filtering

Here we review briefly the wavelet decomposition and
its use in noise filtering. For a comprehensive treatment of
wavelets see [6–8].

2.1 The Discrete Wavelet Transform (DWT)

The standard (bi-)orthogonal discrete wavelet transform
can be seen as a filter bank algorithm iterated on the low-
pass output [7]. A filter bank is a pair of lowpass and high-
pass filters followed by downsampling by two. The lowpass
filtering produces an approximation of the signal, which is
expressed by the scaling coefficients, while the highpass
filtering reveals the details (i.e., the differences between
two successive approximations) that are expressed by the
wavelet coefficients. At the reconstruction, the scaling and
the wavelet coefficients are first up-sampled (by introduc-
ing a zero between each two samples) and then filtered with
a lowpass and a highpass filter, respectively, followed by
summation of the filtered outputs. If the wavelet transform
is orthogonal, the reconstruction highpass and the lowpass
filter coefficients are simply the mirrored versions of their
counterparts at the decomposition stage.

The conventional separable two-dimensional (2D) DWT
follows from applying the filter bank algorithm successively
to the rows and to the columns of an image.

The above described DWT is criticaly sampled (non-
redundant). It is well known that the noise suppression

performance of each denoising method improves when it is
implemented in a redundant representation instead of using
the critically sampled one. In this respect, two approaches
are common: (1) Cycle spining [12]: apply the orthogonal
DWT to several cyclically shifted image versions and av-
erage over unshifted denoising results and (2) Denoising in
a non-decimated (stationary) wavelet representation, which
is computed with the algorithm à trous [7].

2.2 Denoising by wavelet shrinkage

Assume the input image f = [f1, ..., fn] is contaminated
with additive white Gaussian noise of zero mean and vari-
ance σ2. Due to linearity of the wavelet transform, the noise
remains additive in the transform domain as well

wi = yi + εi, i = 1, ..., n (1)

where yi are unknown noise-free wavelet coefficients and εi

are noise contributions. If the wavelet transform is orthogo-
nal, εi are independent identically distributed (i.i.d.) normal
random variables εi ∼ N(0, σ2). In case where the input
standard deviation σ is not known, one usually estimates it
as the median absolute deviation of the highest-frequency
subband coefficients divided by 0.6745 [14].

Regardless of the type of the employed discrete wavelet
transform (e.g., critically sampled or non-decimated), noise
reduction is commonly done by wavelet shrinkage: the
magnitude of each coefficient is reduced by a given amount
depending on the noise level and depending on how likely
it is that a given coefficient represents an actual disconti-
nuity. A common shrinkage approach is thresholding [14],
which sets the wavelet coefficients with “small” magnitudes
to zero while keeping (“hard-thresholding”) or shrinking in
magnitude (“soft-thresholding”) the remaining ones.

As an alternative to somewhat ad-hoc thresholding rules,
one can derive the wavelet shrinkage estimators adapted
to the statistical properties of images using Bayesian ap-
proaches [9,11,21,23]. Moreover, advanced wavelet shrink-
age methods make also use of image context [10], inter-
scale dependencies [13, 15, 22] or intrascale (spatial) cor-
relations [16–18] between image wavelet coefficients. We
shall introduce a new spatially adaptive Bayesian wavelet
shrinkage approach that is adapted to the global subband
statistics and to the local spatial context.

For natural noise-free images, the wavelet coefficient
histograms in each subband are typically long-tailed,
sharply peaked at zero and are commonly modelled by the
generalized Laplacian (also called generalized Gaussian)
density [7, 10, 21]

p(y) =
ν

2sΓ( 1
ν )

exp(−|y/s|ν), s, ν > 0, (2)

where Γ(x) =
∫ ∞
0

tx−1e−tdt is the Gamma function. For
natural images, the shape parameter ν is typically ν ∈ [0, 1].
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Figure 1. An illustration of the proposed de-
noising method, where pdf denotes the prob-
ability density function.

In case of additive white Gaussian noise, the model param-
eters ν and s are estimated from the noisy coefficient his-
togram using the following equations [21]

σ2
w = σ2+

s2Γ( 3
ν )

Γ( 1
ν )

, m4,w = 3σ4+
6σ2s2Γ( 3

ν )
Γ( 1

ν )
+

s4Γ( 5
ν )

Γ( 1
ν )

,

(3)
where σ2

w and m4,w denote the variance and the fourth mo-
ment of the noisy histogram, respectively. A special case in
the family (2) with ν = 1, called Laplacian density, is often
used due to analytical tractability. The scale parameter is
then estimated as

s = [0.5(σ2
w − σ2)]1/2. (4)

In our experiments, this simplification usually does not pro-
duce a significant degradation in performance.

In the following, the term density is used for the prob-
ability density function. Also, as it is usual in the related
literature, the density p(y) is called “prior (model) for y“.

3 The proposed 2D wavelet denoising

In this Section, we investigate two dimensional wavelet
based denoising of video sequences.

3.1 The proposed denoising algorithm

Here proposed denoising method is related to our pre-
vious work on still image denoising [18, 19], which is de-
scribed in more detail in [20], where the proposed approach
is also shown to compare well with the state-of-the-art in
the field. The proposed method estimates how probable it is
that the coefficient represents a “signal of interest” given

• the wavelet coefficient value wl,

• the locally averaged coefficient magnitude in a small
window δ(l): zl =

∑
k∈δ(l) |wk| and

• the global statistical distribution of the coefficients in
a given subband.

We use the locally averaged magnitude zl as a local spa-
tial activity indicator (LSAI). It is well known that large-
magnitude coefficients of noise free images tend to occur
near each other within subbands. Many existing methods,
e.g., [10, 16], use some form of a local measurement (such
as the locally averaged magnitude or local variance) in or-
der to adapt the estimator to the spatial context in the image.
Our approach differs in the sense that we also employ the
conditional probability density functions of the LSAI given
the presence and given the absence of a “signal of interest”.

Starting from the following two hypotheses H1 - “signal
of interest is present” and H0 - “signal of interest is absent”,
we proposed in [19] the following shrinkage estimator

ŷl =
ρξlηl

1 + ρξlηl
wl, (5)

where

ρ =
P (H1)
P (H0)

, ξl =
p(wl|H1)
p(wl|H0)

and ηl =
p(zl|H1)
p(zl|H0)

. (6)

While in our related method [19] ρ, ξl and ηl were estimated
empirically from the image using a preliminary coefficient
classification, here we derive these expressions analytically.

Starting from the generalized Laplacian prior (2) and
defining the hypotheses H0 and H1 explicitly as

H0 : |y| < T and H1 : |y| ≥ T, (7)

where the threshold T defines the notion of the signal of
interest, we have

p(y|H0) =
{ ∝ exp(−|y/s|ν) if y < T,

0 if y ≥ T,
(8)

p(y|H1) =
{ 0 if y < T,

∝ exp(−|y/s|ν) if y ≥ T.
(9)

Since the additive white noise model w = y + ε, with
ε ∼ N(0, σ2) is assumed, the densities of noisy coefficients
p(w|H0) and p(w|H1) result from convolving the normal
density N(0, σ2) with p(y|H0) and with p(y|H1), respec-
tively. Further on, for the model (7), P (H1) is clearly

P (H1) =
∫ −T

−∞
p(β)dβ +

∫ ∞

T

p(β)dβ. (10)

Based on this, for the prior (2) we derive

ρ =
P (H1)
P (H0)

=
1 − Γinc

(
(λT )ν , 1

ν

)
Γinc

(
(λT )ν , 1

ν

) , (11)



where Γinc(x, a) = 1
Γ(a)

∫ x

0
ta−1e−tdt is the incomplete

gamma function. For the Laplacian prior, with ν = 1, the
previous expression reduces to

ρ =
P (H1)
P (H0)

=
exp(−λT )

1 − exp(−λT )
. (12)

Accurate modelling of the conditional densities p(zl|H0)
and p(zl|H1) is difficult. The simplest solution is to assume
that the coefficients are conditionally independent given H0

and H1 and that all the coefficients within the small window
are equally distributed. With these simplifications, the den-
sities of the locally averaged coefficient magnitudes zl over
the window WxW = N are modelled by N convolutions:

p(Nzl|H1) = p(ml|H1) 
 p(ml|H1) 
 ... 
 p(ml|H1)︸ ︷︷ ︸
N

,

p(Nzl|H0) = p(ml|H0) 
 p(ml|H0) 
 ... 
 p(ml|H0)︸ ︷︷ ︸
N

, (13)

where ml denotes the coefficient magnitude ml = |wl|,
with p(ml|H0,1) = 2p(wl|H0,1), ml > 0. The complete
method is illustrated in Fig. 1, where the product ρξlηl from
(5) is denoted as generalized likelihood ratio, due to which
we call this method GenLik. The figure illustrates that all
the required expressions in the proposed method are esti-
mated directly from the noisy coefficient histogram and that
the method estimates how probable it is that a given coeffi-
cient presents useful information, based on its value, based
on a measurement from the local surrounding and based on
the global subband statistics.

A more extensive analysis of the proposed method is
in [20]. We show there that the optimal value of the thresh-
old in terms of the mean squared error is T = σ, and we
also show that on standard test images the proposed method
yields results that are among the best reported in the wavelet
denoising literature. For most test images and noise levels,
the optimal window size is 5x5.

3.2 Implementation details and complexity

The computation of the convolutions such as (13) can be
time consuming. We avoid this problem in our practical ap-
plication by quantizing appropriately all the involved densi-
ties. Since the densities of the wavelet coefficients are sym-
metrical around zero we have ξl = p(ωl|H1)/p(ωl|H0),
and in practice we quantize it to

ξ(ωl) = p(�ωl�|H1)/p(�ωl�|H0), (14)

where �·� denotes the integer operation. We store for each
subband a vector ξ = [ξ(0), ..., ξ(MAX)], where MAX is
the maximum expected magnitude of the wavelet coefficient
in a given subband. Similarly, we also calculate and store

the vector η = [η(0), ..., η(MAX)]. We also normalize the
input image intensity such that the maximum magnitudes
of the wavelet coefficients are relatively small, because then
the convolutions in (13) are computed over short vectors.

Regarding the computation complexity, we need to cal-
culate per subband the expressions (11) and (3) or (12)
and (4) depending on the chosen prior and the vectors
ξ = [ξ(0), ..., ξ(MAX)] and η = [η(0), ..., η(MAX)].
The numerical operations per coefficient are three multipli-
cations, one division and one addition and calculating the
locally averaged magnitude in a 5x5 square window.

In practice, we apply the method in the non-decimated
wavelet transform, with four decomposition levels. The em-
ployed wavelet was symmlet [6] with 8 vanishing moments.
Here we used the generalized Laplacian prior (2). In our
experiments, the simplified algorithm with ν = 1 usually
yielded 0.1dB - 0.3dB worse signal to ratio.

Our Matlab implementation takes several seconds for
256x256 images on the Pentium processor of 1 GHz.

3.3 Results of the 2D wavelet filter

We tested the proposed filter on three grey scale se-
quences: “salesman”, “tennis” and “flowers”. corrupted
with artificial additive white Gaussian noise. As represen-
tatives of single-resolution filters, we used the 3D rational
filter of [1] and the 3D KNN filter of [5].

The results from Fig. 2 correspond to the noise stan-
dard deviation σ = 10. These results demonstrate that the
wavelet filter yields surprisingly high peak signal to noise
ratio (PSNR) values with respect to other two filters even
though it does not use filtering in time. For example, for
the “flowers” sequence the advantage over the 3D KNN fil-
ter [5] is 2dB during the whole sequence. The 2D wavelet
filter yields also much higher PSNR with respect to the 3D
KNN filter for most of the frames in other two sequences.
For higher noise levels the advantage of the wavelet filter is
even more pronounced.

However, the visual quality of the denoised video se-
quences is often not as good as the high PSNR values sug-
gest. We believe that the main reason for this is that the
residual noise as well as inevitable degradations and de-
noising artifacts differ from frame to frame. This causes an
unpleasant visual effect, which can be described as a kind
of background “flickering”. To overcome this problem the
filtering in time is necessary.

4 Wavelet domain and temporal filtering

Here we extend the proposed filtering method to include
the time dimension as well. Our focus was on solutions that
do not increase the complexity significantly.



4.1 The proposed 3D denoising algorithm

Based on experiments, we found that it is effective to
combine the 2D wavelet denoising with temporal filtering
of the denoised frames as we explain next. Let fk denote the
k-th frame of a noise-free video sequence and dk = fk+nk

the corresponding noisy frame, where nk is the noise field.
Further on, let

f̂2D,k = [f̂2D,k
1 , ..., f̂2D,k

L ] (15)

denote the k-th 2D wavelet denoised frame of the sequence.
Our intention is to improve f̂2D,k based on a motion infor-
mation and on temporal filtering. Towards this end, we de-
fine the motion field mk = [mk

1, ...,mk
L] of the k-th frame

with respect to the previous frame as follows

• mk
l = 0 if there is no (significant) motion from the

frame k − 1 to the frame k at the spatial position l,
meaning that fk

l ≈ fk−1
l .

• mk
l = 1 if there is motion from the frame k − 1 to the

frame k at the spatial position l, meaning that fk
l and

fk−1
l differ significantly.

We estimate this motion field from the denoised frames as

m̂k
l =

{ 0, if |f̂2D,k
l − f̂3D,k−1

l | < T,
1, otherwise,

(16)

where T is a threshold that we leave as a free (to be opti-
mized) parameter. At the spatial positions where no motion
was detected, we apply recursive time averaging, yielding
the final 3D filtered pixel intensity:

f̂3D,k
l =

{ αf̂2D,k
l + (1 − α)f̂3D,k−1

l , mk
l = 0,

f̂2D,k
l , otherwise,

(17)
where 0 ≤ α ≤ 1. Note that this recursive filter accumu-
lates and averages the pixel intensities at a given position
from all the previous frames if the motion was not present
at that position. The detection of a motion resets the filter.

4.2 Practical implementation and complexity

The increase of complexity with respect to the 2D filter-
ing scheme is not significant. Additional operations are:
computing the difference between the pixel intensities at
the same position in two consecutive frames and comput-
ing a weighted average of the two corresponding intensities
if their absolute difference is above a fixed threshold.

In our experiments, we set the weighting parameter α to
a constant value α = 0.5 and investigated the influence of
the threshold T on the resulting PSNR value and on the vi-
sual quality. The PSNR values for the three test sequences

and for different values of the threshold T are shown in
Fig. 3. In case of the salesman sequence, the increase of the
value T up to 20 yielded an increasing improvement in the
PSNR. In this sequence the background is static and the ad-
vantage of using the temporal filtering is obvious. However,
in the other two tested sequences, our extension to temporal
filtering does not always produce a better PSNR as com-
pared to the 2D wavelet filter. One can see from Fig. 3 that
in (the parts of) the sequences with rapid movements the re-
sulting PSNR is worse than in case of the 2D wavelet filter-
ing only. Nevertheless, the 3D filtering yielded an improved
visual quality of all the tested sequences.

4.3 Results of the 3D filter and discussion

Fig. 2 shows PSNR for the three tested sequences, for
σ = 10, filtered by the new 3D filter, the 2D wavelet filter,
the 3D rational filter [1], and the 3D KNN filter [5]. The
new 3D filter yields an improvement of 1 to 2dB, with re-
spect to the 3D KNN filter [5], and the improvement of up
to 8dB with respect to the 3D rational filter [1]. The new 3D
filter outperforms all the other tested ones in terms of visual
quality as well (see Fig. 4). The advantage of the new filter
is even greater when viewing the video sequence instead of
comparing the individual frames. It should be also noted
that the 3D rational filter is the fastest and the new filter is
the most complex among the tested ones.

Here the results were presented only for σ = 10. Our
initial experiments, indicate that for higher noise levels the
gain of the new filter with respect to the single-resolution
ones is even larger. However, further research is needed to
automatize the adjustment of the parameters of the temporal
filtering part for different noise levels.

5 Conclusion

In this paper, we studied an application of wavelet based
image denosinig to video sequences. First, we investigated
denoising of the individual frames by means of a spatially
adaptive 2D wavelet domain filtering. The results show
that 2D filtering in the wavelet domain outperforms most
of the existing 3D (spatio-temporal) single resolution filters
in PSNR. However, our results also demonstrated that the
2D wavelet denoised sequences show an unpleasant “flick-
ering” artifact due to the lack of the filtering in time.

To improve the result of the 2D wavelet filtering, we
combined it with a temporal filter, which combines a pixel-
based motion detector and a recursive time-averaging. The
results show that this combination of the 2D wavelet do-
main and temporal filtering outperforms recent 3D single
resolution methods for video denosing in terms of quantita-
tive performance measures and in terms of visual quality.



Figure 2. The quantitative performance of the
proposed 2D and 3D filters in comparison
with the 3D KNN filter [5] and the 3D rational
filter [1].

Figure 3. The influence of the parameter T
on the performance of the proposed 3D filter,
where α = 0.5.



(a) Original (b) Corrupted, PSNR=28.2dB

(c) Rational filter [1], PSNR=30.4dB (d) 3D KNN filter [5], PSNR=33.3dB

(e) 2D Wavelet filter, PSNR=33.0dB (f) Combined 2D wavelet and temporal filter, PSNR=34.6dB

Figure 4. Visual results for the Salesman sequence with noise standard deviation 10.
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Coding, 1995.

[9] F. Abramovich, T. Sapatinas, and B.W. Silverman,
“Wavelet thresholding via a bayesian approach,” J.
of the Royal Statist. Society B, vol. 60, pp. 725–749,
1998.

[10] S.G. Chang, B. Yu, and M. Vetterli, “Spatially adap-
tive wavelet thresholding with context modeling for
image denoising,” IEEE Trans. Image Proc., vol. 9,
no. 9, pp. 1522–1531, Sept. 2000.

[11] H.A. Chipman, E.D. Kolaczyk, and R.E. McCulloch,
“Adaptive bayesian wavelet shrinkage,” J. of the Amer.
Statist. Assoc., , no. 92, pp. 1413–1421, 1997.

[12] R.R. Coifman and D.L. Donoho, “Translation-
invariant denoising,” Wavelets and Statistics, pp. 125–
150, Sept. 1995.

[13] M.S. Crouse, R.D. Nowak, and R.G. Baranuik,
“Wavelet-based statistical signal processing using hid-
den markov models,” IEEE Trans. Signal Proc., vol.
46, pp. 886–902, 1998.

[14] D.L. Donoho and I.M. Johnstone, “Ideal spatial adap-
tation by wavelet shrinkage,” Biometrika, vol. 8, pp.
425–455, 1994.

[15] S Mallat and W.L. Hwang, “Singularity detection and
processing with wavelets,” IEEE Trans. Information
Theory, vol. 38, no. 8, pp. 617–643, Mar. 1992.

[16] M.K. Mihcak, I. Kozintsev, K. Ramchandran, and
P. Moulin, “Low-complexity image denoising based
on statistical modeling of wavelet coefficients,” IEEE
Signal Proc. Lett., vol. 6, no. 12, pp. 300–303, Dec.
1999.

[17] M. Jansen and A. Bultheel, “Empirical bayes ap-
proach to improve wavelet thresholding for image
noise reduction,” J. of the Amer. Statist. Assoc., vol.
96, pp. 223–242, 2001.

[18] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy,
“A joint inter- and intrascale statistical model for
wavelet based bayesian image denoising,” IEEE
Trans. Image Proc, vol. 11, no. 5, pp. 545–557, May
2002.

[19] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy,
“A versatile wavelet domain noise filtration technique
for medical imaging,” IEEE Trans. Medical Imaging,
in press, 2003.

[20] A. Pizurica, Image Denoising Using Wavelets and
Spatial Context Modeling, Ph.D. thesis, Ghent Uni-
versity, Belgium, 2002.

[21] E.P. Simoncelli and E.H. Adelson, “Noise removal
via bayesian wavelet coring,” in Proc. IEEE Internat.
Conf. Image Proc. ICIP, Lausanne, Switzerland, 1996.

[22] J.K. Romberg, H. Choi, and R.G. Baraniuk, “Bayesian
tree structured image modeling using wavelet-domain
hidden markov models,” IEEE Trans. Image Proc.,
vol. 10, no. 7, pp. 1056–1068, July 2001.

[23] B. Vidakovic, “Nonlinear wavelet shrinkage with
bayes rules and bayes factors,” J. of the American Sta-
tistical Association, vol. 93, pp. 173–179, 1998.

[24] K. Shen and E.J. Delp, “Wavelet based rate scalable
video compression,” IEEE Trans. on Circuits and Sys-
tems for Video Technology, vol. 9, no. 1, pp. 109–122,
1999.


