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Abstract| There
olution noise lIters
cations. W e review

is a growing interest in using multires-
in a variet y of medical imaging appli-
recent wavelet denoising tec hniques for
medical ultrasound and for magnetic resonance images and
discuss some of their poten tial applications in the clinical in-
vestigations of the brain. Our goal is to presen t and evaluate
noise suppression metho ds based on both image pro cessing
and clinical exp ertise.

We analyze two types of Iters for magnetic resonance
images (MRI): noise suppression in magnitude MRI images
and denoising blo od oxygen level-dep endent (BOLD) re-

sponse in functional MRI images (f MRI). The noise distri-
bution in magnitude MRI images is Rician, while the noise
distribution in BOLD images has been recently shown to

follo w a Gaussian mo del well. We evaluate dieren t meth-
ods based on signal to noise ratio impro vement and based
on the preserv ation of the shap e of the activ ated regions in
f MRI.

A critical view on the problem of speckle Itering in ul-
trasound images is given where we discuss some of the issues
that are overlo oked in many speckle Iters lik e the relev ance
of the \sp eckled texture", expert-dened features of inter-

est and the reliabilit y of the common speckle models. We
analyze the use of multiresolution speckle lters to impro ve
the automatic pro cessing steps in the clinical researc h of
non-cystic  periv entricular  leuk omalacia. In particular  we
apply speckle lters to ultrasound neonatal brain images
and we evaluate the inuence of the Iltering on the eec-

tiv eness of the subsequen t classication
of airs of aected tissue in comparison
delineation  of clinicians.

Index Terms| Image denoising, wavelets, magnetic reso-
nance imaging, ultrasound, statistical parametric mapping,
false disco very rate control

and segmen tation
with the man ual

I. Intr oduction

The rapid dewelopmert of medical imaging technology
and the introduction of new imaging modalities, suc
as functional magnetic resonanceimaging (f MRI), calls
for new image processing methods including specialized
noise ltering, enhancemen classication and segmeta-
tion techniques. This paper reviews some of the recert
multiresolution denoising methods for medical ultrasound
and MRI imaging and their applications in some clinical
investigations of the human brain. We try to presen an
objective and critical discussionof seweral represenativ e,
recert noise lters basedon their performancein a con-
trolled ervironment (simulations) as well as in practical

A. Pizurica, E. Vansteenkiste and W. Philips are with the Depart-
ment for Telecommunications and Information Processing (TELIN),
Ghent Univ ersity, Sint-Pietersnieu wstraat 41, B-9000 Gent, Belgium.

A.M. Wink is with the Brain Mapping Unit, Department of Psychi-
atry, Addenbrooke's Hospital, Univ ersity of Cambridge, Hills Road,
Cambridge CB2 2QQ, United Kingdom.

J. B.T.M. Roerdink is with the Institute for Mathematics and
Computing Science, Univ ersity of Groningen, P.O. Box 800, 9700
AV Groningen, The Netherlands.

real-life imaging cases.

Contrasting many imaging applications (like commer-
cial broadcast) where the quality of the denoisedimage
is evaluated by how well it pleasesthe human eye, medi-
cal applications imposeother priorities, where for example
smoothing of \features of interest" is intolerable aswell as
the generation of artifacts that could be misinterpreted as
clinically interesting features. We stressthe importance
of such conditions and formulate somerequiremerts that
medical noise lters needto meetin order to be of better
assistancein real clinical investigations.

A practical ultrasound imaging application that we ad-
dressis the semi-automatic segmemation of ares in ul-
trasound brain imaging of Periventricular Leukomalacia
(PVL). We ewaluate noise suppressionbasedon both im-
age processingand clinical expertise. The latter by using
delineations of the a ected brain regions that are made
manually by medical doctors. The f MRI application that
we consider is the detection and the classi cation of ac-
tivated brain regions by using the widely used statistical
parametric mapping. In this application we evaluate and
discussthe usefulnessof di erent noisereduction methods.

A. Paper structure

The structure of this paper is as follows. The Introduc-
tory Sectionendswith a brief review of wavelet transforms
and wavelet denoising principles.

Section |l addressesspedle noise reduction in ultra-
sound images. We start with a description of the spedle
noise model (Sec.l1-A) and we give an overview of some
of the well-adopted single- and multiresolution spedle |-
ters (Sec.11-B). Next we de ne and discusssomecriteria
that are important for designing a reliable noise lter in
real, clinical applications (Sec. |I-C) and we presen, in
more detail, onerecert technique that complieswith suc
requiremerts (Sec.l11-D).

In Section 111 we analyze the use of spedle ltering in
the clinical studies of non cystic PVL. First we introduce
the analyzed imaging application (Sec.I11-A) and we re-
view the existing methods for the (semi-)automatic seg-
mertation of the a ected regions (Sec. 111-B). Based on
multiple experimerts and taking into accourt the expert-
de ned ground truth, we investigate the e ect of wavelet
denoisingon the segmemation accuracy(Sec.l11-C) and on
the segmemation reproducibility (Sec.I11-D) to end with
the conclusionsin Sec.llI-E.

In Section IV we addressthe denoising of MRI image
magnitude, giving a brief description of the noise statis-
tics (Sec.IV-A) and presering a practical denoisingalgo-
rithm (Sec.IV-B). SectionV is dewoted to f MRI, where
we analyze a number of wavelet-baseddenoising schemes



An illustration

Fig. 1. of the non-decimated wavelet transform.
Left column: approximation subbands. HLi, LHi and HHi are the
horizontal, vertical and diagonal detail subbands at the resolution
level i.

experimentally. First we describe common f MRI anal-
ysis methods (Sec. V-A) and we choose a represerativ e
set of wavelet denoising schemes(Sec.V-B). We perform
the experiments on arti cial blood oxygen level-dependert
(BOLD) images(Sec.V-C) and on real f MRI time series
data (Sec.V-D). A discussionon this topic is in Sec.V-E
and a generalconclusion of the paper is in Section VI.

B. Wavelet domain noise ltering

The discrete wavelet transform [1{ 3] translates the im-
age cortent into an approximation subband and a set of
detail subbands at dierent orientations and resolution
scales. Typically, the band-passcontent at ead scaleis
divided into three orientation subbands characterized by
horizontal, vertical and diagonal directions. The approxi-
mation subbandconsistsof the so-calledsaling coe cien ts
and the detail subbandsare composedof the wavelet coef-
cients. Here we considera non-decimated wavelet trans-
form [2] where the number of the wavelet coe cien ts is
equal at eat scale.

Fig. 1 shows a non-decimated wavelet decomposition of
an ultrasound image. In the detail subbandsHLi, LHi and
HHi, the brightest color represeits large positive values
of the wavelet coe cien ts and the dark color corresponds
to the negative coe cien t valueswith largest magnitudes.
Seweral properties of the wavelet transform, which make
this represenation attractiv e for denoising, are easily rec-
ognizedin Fig. 1:

multir esolution - image details of di erent sizesare
analyzedat the appropriate resolution scales
sparsity - the majority of the wavelet coe cien ts are
small in magnitude

edgedetection - large wavelet coe cien ts coincidewith
image edges
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edge clustering - the \edge" coe cien ts within ead
subbandtend to form spatially connectedclusters
edgeevolution acrosssales - the coe cien ts that rep-
resent image edgestend to persist acrossthe scales

Wavelets have been used for denoising in many medi-
cal imaging applications [4{12]. A general procedure is:
(i) calculate the discrete wavelet transform; (ii) remove
noise from the wavelet coe cien ts and (iii) reconstruct a
denoisedsignal or image by applying the inverse wavelet
transform. The saling coe cien ts are typically not mod-
ied exceptfor somespecial imaging modalities like MRI
that we addresslater. The noise-freecomponert of a given
wavelet coe cien t is typically estimated by waveletshrink-
age [13] the idea of which is to heavily suppressthose co-
e cien ts that represen noiseand to retain the coe cien ts
that are more likely to represen the actual signal or image
discortin uities.

Let WE;J- represen the wavelet coe cien t at the resolu-

tion scale2 (1 | J), spatial position k and orientation
D. For compactnesswe shall omit the indicesthat denote
the scaleand the orientation unlessin caseswhereit is ex-
plicity needed. Assumethat in ead wavelet subband an
additiv e noise model holds

1)

Wi = Yk + Nk

where yy is the unknown noise-freesignal componert and
ny an arbitrary noise contribution. A majority of the
wavelet shrinkage estimators can be represerted as

W =Rwe; 0 Re 1 2

whereRy denotesa shrinkagefactor. Ideally, R shouldbe
closeto zerowhen wy is likely to represen pure noiseand
it should be closeto one when wy is likely to represen a
true signal or imagediscortinuity. For the classicalwavelet
thresholding rules [13{16] a threshold value T is de ned
and Ry = O is speci ed asfollows. For hard thresholding
Rk = Oif jwgj < T and Rx = 1 if jwyj T. For soft-
thresholding Ry = Oif jwgj < Tand Ry = 1 T=wj if
jwgj T. Oneof the rst soft-thresholding methods was
developed within medical imaging, for the noise reduction
in magnetic resonanceimages|[17].

Wavelet-baseddenoising methods have also beendevel-
oped within a Bayesian framework [18{27] also used in
medical imaging [10{12]. Examples of Bayesian wavelet
domain estimators of the form (2) are the maximum a pos-
teriori estimator under the Laplacian prior [28] (which es-
sertially amounts to a soft thresholding) and locally adap-
tive linear minimum mean squarederror estimators [29,30]
where Ry = "2=("Z+ 2) and where , denotesthe noise
standard deviation and ~¢ denotesthe estimate of the stan-
dard deviation of the signal (within a given local window
centered at position k). A related, but more sophisticated
approad is recertly proposedin [31]. In someother ap-
proaches [32{34] Rk is de ned as a probability that wy
represers a signi cant signal componert under a Markov
random eld prior on the noise-freewavelet coe cien ts.
Related methods that are based on hidden Markov tree
modelsinclude [35{37].



Il. Noise Reduction in Ultrasound Images

A. Speckle noise in ultrasoundimages

Spedle noise[38,39] a ects all coherert imaging systems
including medical ultrasound. Within ead resolution cell
a number of elemenary scatterersre ect the incident wave
towardsthe sensor. The badscattered coherert waveswith
di erent phasesundergoa constructive or a destructive in-
terferencein arandom manner. The acquiredimageis thus
corrupted by a random granular pattern, called speckle,
that hinders the interpretation of the image cortent.

A spedled imagev = fvi;:::;v,gis commonly modelled
as[7,10]

V) = f|#|; (3)
where f = ffq;:::;fhg is a noise-freeideal image, and
# = f#,;:::;#,0 is a unit mean random eld. Modelling
the correlated ultrasound spedle is studied in [39]. Some
authors assumethat realistic spatially correlated spedie
noise in ultrasound images can be simulated by lowpass
Itering a complex Gaussianrandom eld and taking the
magnitude of the Itered output [7,10,12].

B. Spckle lters

Someof the best known standard despedling lters are
the methods of Lee [40], Frost [41] and Kuan [42]. These
Iters usethe second-ordersamplestatistics within a min-
imum mean squared error estimation approach. More re-
cernt speikle lters in the image domain like the so-called
enhaned Lee and the enhan&d Frost lters [43] combine
the Itering with a preliminary classi cation step: the im-

age pixels are rst assignedinto one of the three classes:
homogeneous,weakly textured or highly heterogeneous.

Supposedly homogeneousmage segmetts are simply aver-
aged,while the highly heterogeneou®nesare kept unmod-
i ed; only the remaining imagesegmeis (weakly textured)
are adaptively Itered. Another common despedling ap-
proadh is the homomorphic Wiener Iter where the image
is rst subjected to a logarithmic transform and then I-

tered with an adaptive lter for additive Gaussiannoise.
Other spedle lters include morpholagical methods [44].
Studies that compare di erent spedkle Iters in the im-
agedomain and in the wavelet domain usually show that
wavelet domain Iters are able to better presene image
details. [45]

Most of the wavelet domain spedcle suppressionmeth-
ods apply rst the logarithmic transformation. Assum-
ing a purely multiplicativ e spedkle model (I1-A) these ap-
proaches simplify that the logarithmic operation trans-
forms spedkle into additive Gaussian noise. The trans-
formed imageis then typically denoisedby wavelet thresh-
olding [46,47] or by a Bayesianwavelet shrinkage[10]which
relieson prior distributions for noise-freedata. It shouldbe
noted that medical ultrasound devicesoften include some
internal data preprocessinglike a logarithmic compression
of the dynamic range of the data. Noisein the resulting
imagesis not purely multiplicativ e and an additional loga-
rithmic transformation prior to spedkle Itering seemsdess
appropriate. Alternativ e spedle lters, that do not I-
ter the image logarithm include a simple, edge-detection
basedmethod of [7] and a Maximum a Posteriori (MAP)
estimator of [48].

C. Somenoteson ltering medical ultrasoundimages

In dewveloping an e cien t and robust denoising method
for medical ultrasound imagesonehasto take into accourt
the following

Adaptation to expert de ned features of interest. - For
an experiencedradiologist, spedkle noise, which is in

medical literature also referred to as \texture" [39],
may presert useful diagnostic information [49, 50].
The desireddegreeof spedle smoothing shouldideally

depend on the expert's knowledgeand on the applica-
tion at hand likethe enhancemehn for visual inspection
or a preprocessingfor an automatic segmetation. For
an automatic segmetmation it is usually preferred to

keepthe sharpnessof the boundariesbetweendi erent

imageregionsand to smooth out the spedled texture.

For a visual interpretation smoothing the texture may

be lessdesirable.

Adaptation to spatial context. - In most \natural" im-

agesincluding the medical ultrasound images there
typically exist a signi cant spatial correlation. A spa-
tially adaptive denoising can be basedon statistical

context modelslike Markov random elds [51] or sim-
ply on adapting certain lter parameters based on
measuremets from a local window around ead pixel.

A critic al view on the usal noise models. - A majority
of the spekle Iters assumefully developed spedle
which is modelled as a multiplicativ e noise and of-
ten simplify that a logarithmic operation transforms
spedle into additive white Gaussian noise. Sudc a
spekle model seemsto be too simplistic in the case
of medical ultrasound images for dierent reasons.
Spedle is not necessarilyfully dewveloped and there
exist a pronounced spatial correlation. Moreover, the
ultrasound devicesthemselesusually perform a pre-
processingof the raw data including even a logarith-

mic compression.Thusin the displayed medical ultra-

sound imagesthe noise di ers signi cantly from the
often assumedmultiplicativ e model.

D. Filtering adopted to expert-de ned features of interest

Clinicians usually tend to prefer the original noisy ultra-
sound imagesrather than the smoothed versionsbecause
the Iters, no matter how sophisticated they are, can de-
stroy somerelevant image details. Howeer, it is alsotrue
that noisesuppressionin many casessigni cantly enhances
the visibilit y of someimagefeaturesand it undoubtedly fa-
cilitates automatic image processingtasks suc assegmen-
tation. It is thus important to develop suc noise lters,
which can guarantee the presenation of thosefeaturesthat
are of interest to the clinician.

D.1 GenLik method - an overview

A multiresolution denoising method that meetsthe re-
quirements from Sec.lI-C is, e.g., the method of [12] that
will be called hereafter GenLik for it usesa Generalized
Likelihood ratio formulation [52]. This method is very
consenative in terms of the assumptions made - it as-
sumesonly that the image features of interest propagate
well acrossscalesbut apart from that imposesno partic-
ular prior statistics on the signal and noise. The signal
and noise statistics are in this method estimated from the
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Fig. 2. Characteristic parts of the GenLik algorithm [12].

image at hand. A good presenation of clinically interest-
ing featuresis guararteed not only due to a local spatial
adaptivity but also due to adaptivity to the preferenceof
a medical expert-user, who can changethe notion of \fea-
tures of interest” by tuning a single parameter.

The GenLik method uses a non-decimated wavelet
transform and shrinks eadr wavelet coe cien t according
to the probability that it preseris a signal (or a feature)
of interest, given the obsened coe cien t value and givena
local spatial activity indicator (LSAI) calculated from the
surrounding coe cien ts. We shall suppressthe indicesthat
denote the scaleand the orientation of a wavelet subband.
Let yx and wy respectively denote the noise-freeand the
obsened wavelet coe cien t at position k and let z, denote
LSAI at the sameposition. Further on, let Xx denote a
binary random variable being a \signi cance label" for wy.
The evert Xy = 1 reads: \wg represerts a signal of inter-
est" (hypothesisH;) and the evert X, = 0 denotesthe
opposite (hypothesisHg). Our denoiseris then

Nk k

= P(Xk = 4wk zk)wyg = ——M—
Pk (Xk = Ljwy; zi)wi T, .

Wi (4)

wherer = P(Xy = 1)=P(Xk = 0) is the prior ratio and
k; k the likelihood ratios, x = pw,jx . (Wj1)=pw,jx . (WjO)
and ¢ = Pz, ix,(zj1)=pz,jx,(zjO), which are estimated
empirically from the input image.

The characteristic parts of this method are in Fig. 2:
in a rst stage, interscale products are compared against
a threshold in order to locate the signi cant (\edge") co-
e cien ts. Optionally, expert knowledge may be used to
tune the threshold de ning the notion of a signi cant fea-
ture. This preliminary classi cation yields a binary mask
R, wherexy = 1indicatesan edgeat position k and xx = 0
indicates no edge. The maskis in the next step usedfor the
empirical estimation of the conditional probability density
functions. As Fig. 2 pictorially shows, the likelihood ratios

k; k are nally subjectedto a piece -wiselinear tting in
a Iogar|g1m|c represemglon The prior ratio is estimated
asft= . RN k=1 R«), where N is the number
of coe cien ts in a given subband.

For a detailed analysis of this method we refer to [12]
and its practical implementation is available for download
at http: =elin.UGent.be= sanja.

D.2 Visual enhancemen by spedle Itering

Two main reasonsfor noise suppressionin imagesare:
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(next Section) and visual enhancemeh Visual enhance-
ment of ultrasound images by wavelet Itering methods
has beenillustrated e.g., in [7,10]. In [12], visual results
also demonstrate a gradual spedle suppressioncortrolled
e.g., by a medical expert-user. Fig. 3 demonstratesthe ef-
fect of spele Itering on an ultrasound brain image. The
original image (Fig. 3 - left) shows a bleedingin the brain
(which occursin seere casesf white matter damage)sur-
rounded by spedle noise. After despedling (Fig. 3 - right)
the bleedingis acceriuated much better in the image.

1. Ultrasound image fil tering in the clinical

studies of leuk omala cia

A brain disease called Periventricular Leukomalacia
alsocalled White Matter Damageoccursfrequertly on pre-
mature neonates.Due to its non-invasive nature and easily
portable devices,ultrasound imaging is the main imaging
modality that is nowadays used for the diagnostics and
clinical studies of this brain disease. Since the quartita-
tiv e analysis of medical ultrasound imagesis di cult and
not well studied yet, physicians depend strongly on the
visual interpretation of the images.

Our contacts with the clinicians in the eld reveal the
need for dewveloping semi-automatic seggmentation meth-
ods. Recernt researth has produced a few sud semi-
automatic segmemation methods, but thesetake little ac-
court of spedkle noise. Here we shaw that using the right
denoising approad as a preprocessingstep improves sig-
nicantly the segmemation performance, both in terms
of accuracy and reproducibility. We make a performance
comparisonbetweenthe existing segmemation methods as
well asthe extensive evaluation of using the proposedpre-
processingstep. In our evaluations we incorporate expert
knowledge i.e., manual are segmetations by physicians.
We show that in combination with the proposed prepro-
cessingstep our novel integrated semi-automatic segmen-

Fig. 3.

Left:
surrounded by spedkle noise. Right:

facilitating the subsequeh (semi-)automatic processing GenLik algoritm.

the original image with a big bright white bleeding,
the image denoised with the
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Fig. 4. Brain aected with WMD, delineated white ares. A square
region of interest for texture examination is also shown.

tation method vyields results that are similar to manual
delineations by experts.

A. Ultrasoundimaging of Periventricular Leukomalacia

A recert increasein survival rate of preterm infants has
lead to an increasing incidence of neurological sequelae
in sudh infants [53]. Periventricular Leukomalacia (PVL)
is characterized by deep white matter lesionsadjecert to
the lateral vertricles, Fig. 4. With a prevalenceof 5-15%
among infants born before 32 weeksof gestation, PVL is
one of the best predictors of cerebral palsy in surviving
preterm infants [54]. PVL is related to as well motoric
dysfunction as well as visual disturbance, somatosensory
disordersand cognitive de cits [55]. Thus, it is important
to try and detect the pathology as early as possible. Cra-
nial ultrasonography is frequertly used for the diagnosis
of PVL during the early neonatal period. Although ultra-
sonograply is useful and non-invasive it takesa few weeks
or more beforethe aring becomesvisible [56]. In current
practice, most experts depend solely on the visual inspec-
tion of the imagesfor the diagnosisof PVL [57]. In order to
objectively support this diagnosisthere is a clear demand
for (semi)automated algorithms to delineate the a ected
regions. The main idea is to extract, in a reproducible
manner, the contours of the disease-a ectedregions,which
would assist doctors in following the history and the de-
velopmert of the diseaseover time.

B. Flare Segmentation

Only a few segmemation technigues were developed so
far for the segmemation of the white aring. The approac
of [58] is based on active contours and usesthe Gradi-
ent Vector Flow method of [59] combined with a single-
resolution despecling method called GATE. Another are
segmetmation method [60] is basedon mathematical mor-
pholagy, and comprisestwo steps: a badkground reduction
using a texture-feature threshold in di erent regionsof in-
terest (see Fig. 4), followed by a closing (to \ Il spedle
holes") and by a morpholagical gradient (to detect the
contour) . Both of the above described segmetation tech-
niguesdemandsomeform of user-interactivit y by choosing
the initialization points in caseof the snakesor the bound-

Fig. 5.

Top left:
Top right:
Bottom middle:
right: manual expert delineation.

snake + GATE, Top middle: snake + Genlik,
manual expert delineation. Bottom left: morphology,
morphology + postprocessing + Genlik, Bottom

ing box in which the badkground reduction is performedin
the caseof the morphological technique.

Although both techniques of are rather fast they still
lack some stability due to the presenceof spedle noise.
The snake algorithm can get stuck on isolated, bright spots
ewven if the parameters are well tuned, as can the mor-
phological technique where little islands can occur after
gradient operations. These artefact are clearly visible in
the left hand imagesof Fig. 5. An improved morphologi-
cal approad is recertly deweloped in [61], which includes
a morphological postprocessingcalled \op ening by recon-
struction". The result of this approac can be seenin the
lower part of Fig. 5.

C. Despeckling and Segmentation Accuracy

We wish to investigate how denoisinga ects segmeia-
tion accuracycomparedto an expert-de ned ground truth.
For our experiments, we selected eight imagesin which
the a ected tissue (aring) was clearly visible and asked
a medical expert to manually segmen the images. These
manual delineations made by the medical expert arein the
following usedas ground truth segmeits.

We segmetted all the tested images using the shake-
technique and the improved morphological technique de-
scribed above. For both approactes we made two sets
of experiments: without preprocessingand with the pre-
ltering usingthe Genlik algorithm from Sectionll-D. The
parameter settings used for the morphology based tech-
nigue are: a plexusthreshold value of 0.9, a dilation radius
of 4, an erosionradius of 3 and a preprocessingradius of 2.
The parameter settings used for the active contours were

=02, =01, =005 =0 =1land = 005
using 80 iterations to compute the Gradient Vector Flow
and 40 to iterate the snake. As threshold for the denois-
ing technique we selectedthe T parameter in the interval
[0; 2] and used a wavelet decomposition up to scaleJ = 3
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Fig. 6. Dice-coe cien ts for both techniques without and with the
Genlik denoising.

and a window sizeof 5 5. As a comparison measure
between the segmemations the Dice-coe cien t was used.
Given two segmemation A and B, the Dice-coe cient DC
is calculated as

2kA\ Bk

kAk + kBk

where kAk stands for the cardinality, pixel surface, of A
and A\ B is the intersection of A and B . The closerthe
Dice-coef cient approacesl, the more the segmemations
are similar, i.e., the better they overlap.

Fig. 6 shansthe Dice-coe cien ts for both techniquesand
for the eight test images,segmeted without and with the
tested wavelet denoising technique. The imagesof Fig. 5
give a visual idea of how the segmemations look like after
denoising comparedto the expert delineations. Both the
Dice-cce cien ts and the visual appearance demonstrate
that the use of wavelet despedling improvesthe segmen-
tation accuracy measuredwith respect to manual delin-
eations by a medical expert.

DC = (5)

D. Despeckling and Segmentation Reproducibility

Next we study the e ect of wavelet denoisingon the seg-
mentation stability or reproducibility of its results. Since
in our evaluations the improved morphological segmera-
tion outperformed the one on active contours, we focused
on the morphological technique for our next experimert.
We constructed two setsof test images,which are actually
the same eight images as used above, without and with
denoising. Out of both test-sets, we let the computer pick
an imagerandomly which waspreseried to the medical ex-
pert to segmen This continueduntil ead of the 16images
was picked and segmeted 3 times. We did this in order
to scranble the imagesand prevert the user of using prior
information if asked to segmen the sameimage multiple
times. After this segmemation part, the Overlap Ratio
(OR) of eath group of three segmemations was calculated,
again using the Dice-cce cien t. The results are shown in
Tablel. Theseresults arein favor of wavelet denoising: for
sewen out of eight imagesthe reproducibilit y improvesdue
to pre- Itering with the analyzed wavelet basedmethod.

E. Conclusionson Despeckling for Flare Segmentation

A mini-study on ultrasound brain image segmemation
that is presened in this Sectionundoubtedly demonstrates
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OR (%) no denoising OR (%) Genlik
image 1 92.60 93.60
image 2 92.26 92.30
image 3 90.34 95.35
image 4 89.80 91.67
image 5 91.32 93.56
image 6 95.75 95.79
image 7 92.09 94.34
image 8 98.80 91.67

TABLE |
Overlap Ratios for the tw o test set without
Genlik denoising

and with

the usefulnesof wavelet domain noisereduction in this ap-
plication. As can be seenfrom Fig. 5, after denoisingthe
segmetted contours are lessfragmerted, and are closerto
the manual segmemations by medical experts. Our exper-
iments demonstrated that the reproducibility of the seg-
merntation also improves after wavelet domain denoising.
This provesthat indeedthere is a real meaningto the noise
reduction as a pre-processingstep in this application.

Compared to the analyzed single-resolution GATE de-
spedling method for ultrasound images,the tested wavelet
Iter proved advantageous, both visually (Fig. 5) and in
terms of objective performance measures(Fig. 6). It is
worth menrtioning that the morphological segmemation
technique of [61] analyzed here with the wavelet domain
Genlik denoiseris nowadays already testedin clinical prac-
tice at the neonatologydepartment of the So a Children’s
Hospital Rotterdam, The Netherlands.

IV. Denoising MRI images

In magneticresonancemaging the practical limits of the
acquisition time imposea trade-o between SNR and im-
ageresolution (see,e.g., [62{64]). The acquisition time is
limited in practice due to the patient comfort and physi-
cal limitations (especially in dynamic applications, suc as
cardiac imaging and functional MRI [65]). Post-processing
noise reduction is therefore often seenas the only means
of achieving a desired MRI image quality. Wavelet based
denoising methods for MRl and f MRI images include
[4,6,11,12,17]. The rst oneswere basedon simple soft-
thresholding [17], and the more recert onesoften incorpo-
rate the coe cien t propagation acrossscalesin the form
of multiscale products [4,11,26] and combining these mul-
tiscale products with the spatial context [12].

A. Noisein MRI

The main sourceof noisein MRI imagesis the thermal
noise in the patient [66]. The MRI image is commonly
reconstructed by computing the inverse discrete Fourier
transform of the raw data [63]. The signal component of
the measuremets is presern in both real and imaginary
channels; eath of the two orthogonal channelsis a ected
by additive white Gaussiannoise. The noisein the recon-
structed complex-valued data is thus complex white Gaus-
sian noise.

Most commonly, the magnitude of the reconstructed
MRI imageis usedfor visual inspection and for automatic
computer analysis. Sincethe magnitude of the MRI sig-
nal is the square root of the sum of the squaresof two



Fig. 7.

Left: an original MRI image magnitude. Right: the result
of a wavelet denoising method for Rician noise from Section IV-B.

independert Gaussianvariables, it follows a Rician distri-
bution. In low intensity (dark) regions of the magnitude
image, the Rician distribution tends to a Rayleigh distri-
bution [67] and in high intensity (bright) regionsit tends
to a Gaussiandistribution. A practical consequencds a
reducedimage cortrast: noiseincreasesthe mean value of
pixel intensities in dark image regions.

Due to the signal-dependert mean of the Rician noise,
both the wavelet and the scalingcoe cien ts of a noisy MRI
image are biasel estimatesof their noise-freecounterparts.
In [65] it wasshown that onecan e cien tly overcomethis
problem by lItering the squae of the MRI magnitude im-
agein the wavelet domain. In the squared magnitude im-
age, data are non-certral chi-square distributed, and the
wavelet coe cien ts are no longer biased estimates of their
noise-freecourterparts. The bias still remainsin the scal-
ing coe cien ts, but is not signal-dependert and it can be
easily removed: at the resolution scale? , from ead scal-
ing coe cien t 2*1  should be subtracted, where 2 is the
underlying complex Gaussiannoisevariance. This valueis
typically estimated from the noisy image: MRI imagesin-
clude an empty region of air outside the patient; in the
squaredmagnitude image, the averagepixel value in those
empty (border) regionsis 2 2.

B. Adaptad GenLik methad for Rician noise

According to the explanation given above, the GenLik
algorithm from SectionlI-D should be adapted for the sup-
pression of Rician noisein MRI image magnitude as fol-
lows:

- Compute the squareof the MRI magnitude image;

- Compute the non-decimatedwavelet transform with L

decomposition levels (in practice, we usedL =4);

- Estimate the wavelet coe cien ts as described in Sec-

tion 11-D;

- Subtract 2-*1 | from the scaling coe cien ts;

- Apply the inversewavelet transform;

- Compute the squareroot of the image.

Fig. 7 illustrates the application of this method to one
real MRI image magnitude, and in the next Section, we
study its application to f MRI images.

V. Denoising of functional
series

MRI (f MRI) time

This sectionanalyzesa number of wavelet-baseddenois-
ing schemesfor f MRI time seriesdata experimertally.

A. Analysis of fMRI data

An f MRI data set is a sequenceof three-dimensional
(3D) MR images,recordedwhile the personin the scanner
performs a speci ¢ task. Most f MRI analysismethods are
basedon the generallinear model (GLM), which models
the total brain responseasthe superposition of all individ-
ual stimulus responses[68]. In the GLM, the responseto
ead stimulus is modelled as the output of a linear, time-
invariant (LTI) system. Such a systemis characterised by
its impulse response,which, in the caseof f MRI analysis,
is denotedasthe haemalynamic responsefunction (HRF).
The response signal to ead type of stimulus is given by
the corvolution of the time pattern in which these stimuli
occur, and the HRF corresponding with that type of stim-
ulus. Such a responsesignal is called an e ect of interest

The analysisof f MRI data in the GLM is done via the
following formula:

Yo vi= X wrowo ot € ot

(6)

Here, Y is the f MRI data of T time points and N vox-
els (volume elemerts), X is the design matrix, whoserow
vectors are the modelled e ects. Thesemay be e ects of
interests (such as modelled response)and e ects of no in-
terest (such as movemert-related artefacts or cardiac sig-
nals). The matrix  contains the weight of eat e ect in
ead voxel. The residual signal (the part of the signal not
modelled in X) endsup in the matrix e. The brain re-
gions that have a signi cant cortribution to the task are
selectedvia hypothesistesting, i.e., regionswhosevoxel lo-
cations have signi cantly high valuesin the row of that
corresponds to the task, are consideredsigni cant.

Hypothesis testing may be done with either paramet-
ric [69] or nonparametric [70] statistical methods. The
latter have the advantage that they do not require any as-
sumptions about the distributions of the noise. The main
advantage of the former is that they are computationally
lessdemanding, while the methods are quite robust to de-
viations from the assumednoisedistribution (which is usu-
ally Gaussian). Most hypothesis tests compare the mag-
nitude of the e ects of interest with a threshold basedon
the distribution of the noisein the data. After the trans-
formation described in (6), a good estimate for the noise
(provided the predictable e ects are modelled as well as
possibleby X) is given by e. Smaller valuesin e lead to
lower statistic thresholds, and therefore better detection.
Good denoising methods lower the noise amplitudes, but
keepthe signal intact.

B. Testal waveletdenoising methads for fMRI

The most common preprocessingstep in f MRI data
analysis is to apply a Gaussian smoothing, i.e., by I-
tering the imageswith a lowpass Gaussiankernel. Gaus-
sian smoothing decreasedhe noise amplitude, but it also
changesthe shape of the signal. Specically, ne (high-
frequency) featuresin the imagesare obscuredby smooth-
ing. We examinethe performanceof wavelet-baseddenois-
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Fig. 8. Top row - images usedin the experiment: (a) the activ e region with aline prole (solid line) taken from the image (dotted line), (b)
the noise-free template image from the BrainWeb simulator with the activ e region shown in white, (c) the BOLD image made by subtracting

two noisy images with SNR = 18 dB. Middle and bottom

rows - denoising results: (d) GenLik for Rician noise (SNR=4.5 dB), (e) basic

GenLik (SNR=7.9 dB), (f) InvShrink (SNR=3.0 dB), (g) the MinMaxThr esh (SNR=3.6 dB), and (h) Gaussian smoothing with FWHM =

1 pixel (SNR=3.3 dB) and () FWHM = 4 4 pixels (SNR=3.2dB).

ing methodsin the setting of f MRI analysis, by comparing
them with the traditional Gaussiansmaoothing.

The Wavelab padkage [71] contains some of the most
well-known wavelet-baseddenoisingmethods in usetoday.
They have been demonstrated in the f MRI setting and
comparedto Gaussiansmoothing [72]. In that paper, tests
are done on synthetic BOLD images, constructed by sub-
tracting pairs of MR imageswhich both corntain synthetic
Rician noise[?,73,74]. The activation time signalis a block
signal. Another test is doneon a real data set, alsowith a
block activation pattern.

We use the WavelLab-based methods InvShrink and

MinMaxThr esh preseried in [72]. We also use the Gen-
Lik denoising method of [12], both in its basic form, as
described in Section|l-D, and with the adaptation for Ri-
cian noise, which consistsin applying the samemethod to
the squaredimage and compensating for the bias in the
scaling coe cien ts (see Sec. IV-B). Finally, we use two
degreesof Gaussian smoothing: FWHM (FWHM = full
width at half maximum) = 4 4 4 mm?® (or one pixel)
and FWHM = 12 12 12mm? (or 4 4 pixels).
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Fig. 9. Denoising articial bold images (left) using a soft-
thresholding method BayesShrink of [23] (middle) and using the
Genlik method (right).

C. Articial

The blood oxygenation level dependert (BOLD) con-
trast is computed as the di erence betweentwo MR im-
ages. Thesetwo MR imageshave Rician distributed grey
values. The distribution of the dierence of two Rician
setsis symmetric and near-Gaussian[72]. We useda sim-
ulated MR image from the BrainWeb simulator [75] with-
out noise. Rician distributed noisewith a known SNR was
addedto 2 copiesof the image, of which one contained an
active spot (seeFig. 8a-b), where the signal was increased
by 5% of the maximum grey value. After adding the noise,
the imageshad an SNR of 18 dB. The BOLD image made
by subtracting the images (see Fig. 8c) had an SNR of
-0.1 dB. After applying the preprocessingsteps described
above, the SNR was measuredagain.

Figure 8(d-i) shows the results for the tested methods.
The denoisedBOLD imageis presenied and overlaid with
a cross-sectionof the image ( xed line) at a location inside
the active region (indicated by the dotted line). All the
tested wavelet methods outperform the Gaussiansmooth-
ing (Fig.8i) and the basic Genlik method from Sectionll-D
achievesthe bestresult (Fig. 8d). Fig. 9 comparesthe per-
formance of the Genlik method and the Bayesianwavelet
thresholding method BayesShrink of [23], which usesa uni-
form threshold per subband that is optimized in terms of
the mean-squarecerror. This gure illustrates that wavelet
basedmethods can presene the shape of the activated re-
gion remarkably well even in casesof sewere noise. In this
respect, it is however advantageousto usea sophisticated
locally adaptive wavelet method instead of a global thresh-
olding with a uniform threshold per subband.

BOLD images

D. Time seriesof MR images

A sequencef real MR imageswasrecordedwithout pre-
serting stimuli. This null experiment is assumedto con-
tain only noise [76]. The imagesare gradient echo EPI
images collected with a Bruker Medspec 3.0T system at
the Wolfson Brain Imaging Centre, Cambridge. The im-
agesare64 64 21voxels,with voxel size3.9 3.9 5mm3.
Realignment and spin excitation history correction were
done with BAMM software [77], to remove as many arte-
facts as possiblefrom the data. Activation with a spatial

(b)

(@ (©

Fig. 10. The shape of the active region: (a) transverse view, (b)
sagittal view and (c) coronal view.
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Fig. 11. (a) The stimulus sequence. (b) The damped harmonic
oscillator HRF that was used to model the activation (i) and the
gamma density HRF (ii ) that wasusedto estimate the GLM. (c) The
modelled response.

pattern as shown in g. 10 was added to the data. The
time pattern of the activation was made by corvolving a
randomisedstimulus sequencgsee g. 11a)with a haemo-
dynamic responsefunction (HRF). The HRF describesthe
changesin regional blood ow (and therefore also in the
f MRI time signal) following a very short stimulus. We
model the HRF as the impulse response function of a 4-
elemen windkessel[78,79], which is a damped harmonic
oscillator (see g. 11b). The parameters of the function
were chosenso as to resenble somemore common HRFs,
sud asthe one composedof two gammadensity functions
(see g. 11b). Figure 11lcshows the time signal.

After adding the activation, copiesof the MRI time se-
ries were processedwith the dierent methods. Each de-
noised version of the time serieswas then analysed with
the SPM software [69]. The matrix X [see6] consistedof
an “expected' responseand a constart signal (to represett
the time seriesmean). To make the experimernt more real-
istic, the estimated responsewas not completely the same
as the ‘real' response: the responsein X was constructed
by corvolving the stimuli with the gamma denisty HRF.

After estimating the GLM, the variance ratio was com-
puted in ead voxel. The variance ratio is the amount of
variance explained by the model, divided by the amount of
variancein the residual. Activ e regionswere found by per-
forming an F-test on the voxels in the parametric maps.
Activ ated regions(after thresholding the mapsat p=0.001)
are showvn in Fig. 12.
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(@) (b) (c)

(d) (e) ®

Fig. 12. Statistical maps of the time seriesafter di eren t preprocessingsteps: (a) Genlik method adapted for Rician noise (b) basic Genlik,
(c) InvShrink , (d) MinMaxThr esh, and (e) Gaussian smoothing with FWHM = 4 4 4mm?3 and (f) FWHM = 12 12 12 mm3.



E. Discussionon fMRI denoising

The results on the tested real MRI sequence preserted
above show that despite the various models that exist for
f MRI noise (both spatial and temporal), the real caseis
usually still hard to analyse. When the Genlik method
is applied to the squaredimage (Rician noise version), a
large areais detectedaround the original spot, that is quite
di erent in shape than the original active region. This is
due to the local variance componert usedto predict the
local distributions of noiseand signal. EPI imageshave low
contrast, and the (erratic) shapesfound in the brain bias
the classi cation. The basicGenlik method (applied to the
original and not squaredimage) is much more consenative,
and detects only a portion of the original region. The
number of false positives, however, is also very small.

The Wavelab-methods from [72] perform similarly to
the latter one. Large portions of the original spot ar miss-
ing, but there are few false positives.

Gaussiansmathing with akernelof4 4 4mm? (which
is a bit smaller than the voxel size) gives quite good re-
sults. The shape of the original activation is well detected.
The number of false positivesis larger than those of the
Gaussiannoise and wavelet-basedmethods, but the num-
ber of false positives is lower. Gaussian smoothing with
a large smoothing kernel (12 12 12 mm?3) givesthe no-
torious smoothing-related deformations: heavily deformed
detected regions with many false positives, and large de-
tected areasat other locations.

A possible explanation for the di erence between the
results of the simulations and this real data example is
that the Genlik method is tuned to too ne resolution as
compared to the f MRl sequencewe experimented with.
Also, the performanceof the Wavelab may be a ected by
violations of the assumptionsabout the noise distribution
(Gaussiansmoothing doesnot usesuc assumptions,while
Wavelab methods do). Another explanation may be the
presenceof disturbing factors in the data, which needto
be removed before a proper analysis can be done. One
important thing to consideris that when the assumptions
used by the denoising algorithms do not hold, it is not
likely that statistical tests basedon theseassumptionscan
be applied correctly. In the caseof statistical mapping, the
nonparametric approach [70,80] may be a good alternativ e.

VI. Conclusion

In this paper somepractical applications of wavelet do-
main denoising in ultrasound and in MRI imaging were
demonstrated. The preseried results demonstrate the use-
fulnessof wavelet denoisingfor visual enhancemen of im-
agesas well as for improving somefurther automatic pro-
cessinglike the segmetation of ultrasound images.

In caseof the ultrasound imaging, the interactive noise
reduction scheme, taking into accourt prior information
aswell aslocal regional statistics lead to a more naturally
ultrasound image,in which anatomical featureswerebetter
kept intact. This preprocessingstep undeniably lead to a
more stable, reproducible segmetation than was known
up to now. We obtained cortours that are more similar to
the delineations of the medical experts and were able to
prove that as well visually as mathematically. In current
medical practice, this meansthat the experts, once they
classi ed the imageasbeing malignant, by setting a simple
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threshold can visualize the pathology.

In caseof f MRI, wavelet baseddenosingmethods have
shown to be e ectiv e in terms of improving SNR as well
as preserving the shape of the activated region. It has
to be mentioned, however, that the results on real f MRI
data, where denoising was combined with the statistical
parametric mapping, were somewhat disappointing com-
paredto the purely simulated cases.There is still adelicate
tradeo betweensensitivity (the ability to detect the target
region) and speci cit y (the ability to not detect non-target
regions)in f MRI analysis. Newwavelet-basedmethods are
currently in developmert, and will hopefully contribute to
nding the optimal balance between detection power and
cortrol of false positives.
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