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A reviewof waveletdenoisingin MRI and
ultrasoundbrain imaging
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A bstr act | There is a gro wing in terest in using m ultires-
olution noise �lters in a variet y of medical imaging appli-
cations. W e review recen t wavelet denoising tec hniques for
medical ultrasound and for magnetic resonance images and
discuss some of their p oten tial applications in the clinical in-
vestigations of the brain. Our goal is to presen t and evaluate
noise suppression metho ds based on b oth image pro cessing
and clinical exp ertise.

W e analyze t wo t yp es of �lters for magnetic resonance
images (MRI): noise suppression in magnitude MRI images
and denoising blo od oxygen lev el-dep enden t (BOLD) re-
sp onse in functional MRI images ( f MRI). The noise distri-
bution in magnitude MRI images is Rician, while the noise
distribution in BOLD images has b een recen tly shown to
follo w a Gaussian mo del well. W e evaluate di�eren t meth-
ods based on signal to noise ratio impro vemen t and based
on the preserv ation of the shap e of the activ ated regions in
f MRI.

A critical view on the problem of sp eckle �ltering in ul-
trasound images is giv en where we discuss some of the issues
that are overlo ok ed in man y sp eckle �lters lik e the relev ance
of the \sp eckled texture", exp ert-de�ned features of in ter-
est and the reliabilit y of the common sp eckle mo dels. W e
analyze the use of m ultiresolution sp eckle �lters to impro ve
the automatic pro cessing steps in the clinical researc h of
non-cystic p eriv entricular leuk omalacia. In particular we
apply sp eckle �lters to ultrasound neonatal brain images
and we evaluate the inuence of the �ltering on the e�ec-
tiv eness of the subsequen t classi�cation and segmen tation
of airs of a�ected tissue in comparison with the man ual
delineation of clinicians.

Index Terms | Image denoising, wavelets, magnetic reso-
nance imaging, ultrasound, statistical parametric mapping,
false disco very rate con trol

I. Intr oduction

The rapid development of medical imaging technology
and the intro duction of new imaging modalities, such
as functional magnetic resonanceimaging (f MRI), calls
for new image processingmethods including specialized
noise �ltering, enhancement, classi�cation and segmenta-
tion techniques. This paper reviews some of the recent
multiresolution denoisingmethods for medical ultrasound
and MRI imaging and their applications in someclinical
investigations of the human brain. We try to present an
objective and critical discussionof several representativ e,
recent noise �lters based on their performance in a con-
trolled environment (simulations) as well as in practical
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real-life imaging cases.
Contrasting many imaging applications (lik e commer-

cial broadcast) where the quality of the denoised image
is evaluated by how well it pleasesthe human eye, medi-
cal applications imposeother priorities, where for example
smoothing of \features of interest" is intolerable as well as
the generation of artifacts that could be misinterpreted as
clinically interesting features. We stress the importance
of such conditions and formulate somerequirements that
medical noise �lters need to meet in order to be of better
assistancein real clinical investigations.

A practical ultrasound imaging application that we ad-
dress is the semi-automatic segmentation of ares in ul-
trasound brain imaging of Periventricular Leukomalacia
(PVL). We evaluate noise suppressionbasedon both im-
age processingand clinical expertise. The latter by using
delineations of the a�ected brain regions that are made
manually by medical doctors. The f MRI application that
we consider is the detection and the classi�cation of ac-
tivated brain regions by using the widely used statistical
parametric mapping. In this application we evaluate and
discussthe usefulnessof di�eren t noisereduction methods.

A. Paper structure

The structure of this paper is as follows. The Intro duc-
tory Sectionendswith a brief review of wavelet transforms
and wavelet denoisingprinciples.

Section I I addressesspeckle noise reduction in ultra-
sound images. We start with a description of the speckle
noise model (Sec. I I-A) and we give an overview of some
of the well-adopted single- and multiresolution speckle �l-
ters (Sec. I I-B). Next we de�ne and discusssomecriteria
that are important for designing a reliable noise �lter in
real, clinical applications (Sec. I I-C) and we present, in
more detail, one recent technique that complieswith such
requirements (Sec. I I-D).

In Section I I I we analyze the use of speckle �ltering in
the clinical studies of non cystic PVL. First we intro duce
the analyzed imaging application (Sec. I I I-A) and we re-
view the existing methods for the (semi-)automatic seg-
mentation of the a�ected regions (Sec. I I I-B). Based on
multiple experiments and taking into account the expert-
de�ned ground truth, we investigate the e�ect of wavelet
denoisingon the segmentation accuracy(Sec.I I I-C) and on
the segmentation reproducibilit y (Sec. I I I-D) to end with
the conclusionsin Sec.I I I-E.

In Section IV we addressthe denoising of MRI image
magnitude, giving a brief description of the noise statis-
tics (Sec.IV-A) and presenting a practical denoisingalgo-
rithm (Sec. IV-B). Section V is devoted to f MRI, where
we analyze a number of wavelet-baseddenoising schemes
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Fig. 1. An illustration of the non-decimated wavelet transform.
Left column: approximation subbands. HL i , LH i and HH i are the
horizontal, vertical and diagonal detail subbands at the resolution
level i .

experimentally . First we describe common f MRI anal-
ysis methods (Sec. V-A) and we choose a representativ e
set of wavelet denoising schemes(Sec. V-B). We perform
the experiments on arti�cial blood oxygen level-dependent
(BOLD) images(Sec.V-C) and on real f MRI time series
data (Sec.V-D). A discussionon this topic is in Sec.V-E
and a generalconclusionof the paper is in Section VI.

B. Wavelet domain noise �ltering

The discrete wavelet transform [1{3] translates the im-
age content into an approximation subband and a set of
detail subbands at di�eren t orientations and resolution
scales. Typically, the band-passcontent at each scale is
divided into three orientation subbands characterized by
horizontal, vertical and diagonal directions. The approxi-
mation subbandconsistsof the so-calledscaling coe�cien ts
and the detail subbandsare composedof the wavelet coef-
�cien ts. Here we considera non-decimated wavelet trans-
form [2] where the number of the wavelet coe�cien ts is
equal at each scale.

Fig. 1 shows a non-decimatedwavelet decomposition of
an ultrasound image. In the detail subbandsHLi , LHi and
HHi , the brightest color represents large positive values
of the wavelet coe�cien ts and the dark color corresponds
to the negative coe�cien t valueswith largest magnitudes.
Several properties of the wavelet transform, which make
this representation attractiv e for denoising,are easily rec-
ognizedin Fig. 1:

� multir esolution - image details of di�eren t sizes are
analyzedat the appropriate resolution scales

� sparsity - the majorit y of the wavelet coe�cien ts are
small in magnitude

� edgedetection - largewavelet coe�cien ts coincidewith
image edges

� edge clustering - the \edge" coe�cien ts within each
subband tend to form spatially connectedclusters

� edgeevolution acrossscales - the coe�cien ts that rep-
resent image edgestend to persist acrossthe scales

Wavelets have been used for denoising in many medi-
cal imaging applications [4{12]. A general procedure is:
(i) calculate the discrete wavelet transform; (ii) remove
noise from the wavelet coe�cien ts and (iii) reconstruct a
denoisedsignal or image by applying the inversewavelet
transform. The scaling coe�cien ts are typically not mod-
i�ed except for somespecial imaging modalities like MRI
that we addresslater. The noise-freecomponent of a given
wavelet coe�cien t is typically estimated by waveletshrink-
age [13] the idea of which is to heavily suppressthose co-
e�cien ts that represent noiseand to retain the coe�cien ts
that are more likely to represent the actual signal or image
discontinuities.

Let wD
k;j represent the wavelet coe�cien t at the resolu-

tion scale2j (1 � j � J ), spatial position k and orientation
D . For compactness,we shall omit the indices that denote
the scaleand the orientation unlessin caseswhere it is ex-
plicitly needed. Assumethat in each wavelet subband an
additiv e noisemodel holds

wk = yk + nk (1)

where yk is the unknown noise-freesignal component and
nk an arbitrary noise contribution. A majorit y of the
wavelet shrinkageestimators can be represented as

ŷk = Rk wk ; 0 � Rk � 1 (2)

whereRk denotesa shrinkagefactor. Ideally, Rk should be
closeto zero when wk is likely to represent pure noiseand
it should be closeto one when wk is likely to represent a
true signal or imagediscontinuit y. For the classicalwavelet
thresholding rules [13{16] a threshold value T is de�ned
and Rk = 0 is speci�ed as follows. For hard thresholding:
Rk = 0 if jwk j < T and Rk = 1 if jwk j � T . For soft-
thresholding: Rk = 0 if jwk j < T and Rk = 1 � T=jwk j if
jwk j � T . One of the �rst soft-thresholding methods was
developed within medical imaging, for the noise reduction
in magnetic resonanceimages[17].

Wavelet-baseddenoisingmethods have also beendevel-
oped within a Bayesian framework [18{27] also used in
medical imaging [10{12]. Examples of Bayesian wavelet
domain estimators of the form (2) are the maximum a pos-
teriori estimator under the Laplacian prior [28] (which es-
sentially amounts to a soft thresholding) and locally adap-
tiv e linear minimum meansquarederror estimators [29,30]
where Rk = �̂ 2

k =(�̂ 2
k + � 2

n ) and where � n denotesthe noise
standard deviation and �̂ k denotesthe estimateof the stan-
dard deviation of the signal (within a given local window
centered at position k). A related, but more sophisticated
approach is recently proposed in [31]. In someother ap-
proaches [32{34] Rk is de�ned as a probabilit y that wk
represents a signi�cant signal component under a Markov
random �eld prior on the noise-freewavelet coe�cien ts.
Related methods that are based on hidden Markov tree
models include [35{37].
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I I. Noise Reduction in Ul trasound Images

A. Speckle noise in ultrasoundimages

Speckle noise[38,39]a�ects all coherent imaging systems
including medical ultrasound. Within each resolution cell
a number of elementary scatterersreect the incident wave
towards the sensor.The backscatteredcoherent waveswith
di�eren t phasesundergoa constructive or a destructive in-
terferencein a random manner. The acquiredimageis thus
corrupted by a random granular pattern, called speckle,
that hinders the interpretation of the image content.

A speckled imagev = f v1; :::; vn g is commonly modelled
as [7,10]

vl = f l #l ; (3)

where f = f f 1; :::; f n g is a noise-free ideal image, and
# = f #1; :::; #n g is a unit mean random �eld. Modelling
the correlated ultrasound speckle is studied in [39]. Some
authors assumethat realistic spatially correlated speckle
noise in ultrasound images can be simulated by lowpass
�ltering a complex Gaussianrandom �eld and taking the
magnitude of the �ltered output [7,10,12].

B. Speckle �lters

Someof the best known standard despeckling �lters are
the methods of Lee [40], Frost [41] and Kuan [42]. These
�lters usethe second-ordersamplestatistics within a min-
imum mean squarederror estimation approach. More re-
cent speckle �lters in the image domain like the so-called
enhanced Lee and the enhanced Frost �lters [43] combine
the �ltering with a preliminary classi�cation step: the im-
age pixels are �rst assignedinto one of the three classes:
homogeneous,weakly textured or highly heterogeneous.
Supposedlyhomogeneousimagesegments are simply aver-
aged,while the highly heterogeneousonesare kept unmod-
i�ed; only the remaining imagesegments (weakly textured)
are adaptively �ltered. Another common despeckling ap-
proach is the homomorphic Wiener �lter where the image
is �rst subjected to a logarithmic transform and then �l-
tered with an adaptive �lter for additiv e Gaussiannoise.
Other speckle �lters include morphological methods [44].
Studies that compare di�eren t speckle �lters in the im-
age domain and in the wavelet domain usually show that
wavelet domain �lters are able to better preserve image
details. [45]

Most of the wavelet domain speckle suppressionmeth-
ods apply �rst the logarithmic transformation. Assum-
ing a purely multiplicativ e speckle model (I I-A) theseap-
proaches simplify that the logarithmic operation trans-
forms speckle into additiv e Gaussian noise. The trans-
formed imageis then typically denoisedby wavelet thresh-
olding [46,47]or by a Bayesianwavelet shrinkage[10]which
relieson prior distributions for noise-freedata. It shouldbe
noted that medical ultrasound devicesoften include some
internal data preprocessinglike a logarithmic compression
of the dynamic range of the data. Noise in the resulting
imagesis not purely multiplicativ e and an additional loga-
rithmic transformation prior to speckle �ltering seemsless
appropriate. Alternativ e speckle �lters, that do not �l-
ter the image logarithm include a simple, edge-detection
basedmethod of [7] and a Maximum a Posteriori (MAP)
estimator of [48].

C. Somenotes on �ltering medical ultrasound images

In developing an e�cien t and robust denoising method
for medical ultrasound imagesonehasto take into account
the following

� Adaptation to expert de�ned features of interest. - For
an experiencedradiologist, speckle noise, which is in
medical literature also referred to as \texture" [39],
may present useful diagnostic information [49, 50].
The desireddegreeof speckle smoothing should ideally
depend on the expert's knowledgeand on the applica-
tion at hand like the enhancement for visual inspection
or a preprocessingfor an automatic segmentation. For
an automatic segmentation it is usually preferred to
keepthe sharpnessof the boundariesbetweendi�eren t
imageregionsand to smooth out the speckled texture.
For a visual interpretation smoothing the texture may
be lessdesirable.

� Adaptation to spatial context. - In most \natural" im-
ages including the medical ultrasound images there
typically exist a signi�cant spatial correlation. A spa-
tially adaptive denoising can be based on statistical
context models like Markov random �elds [51] or sim-
ply on adapting certain �lter parameters based on
measurements from a local window around each pixel.

� A critic al view on the used noise models. - A majorit y
of the speckle �lters assumefully developed speckle
which is modelled as a multiplicativ e noise and of-
ten simplify that a logarithmic operation transforms
speckle into additiv e white Gaussian noise. Such a
speckle model seemsto be too simplistic in the case
of medical ultrasound images for di�eren t reasons.
Speckle is not necessarily fully developed and there
exist a pronouncedspatial correlation. Moreover, the
ultrasound devicesthemselvesusually perform a pre-
processingof the raw data including even a logarith-
mic compression.Thus in the displayed medical ultra-
sound images the noise di�ers signi�cantly from the
often assumedmultiplicativ e model.

D. Filtering adopted to expert-de�ned features of interest

Clinicians usually tend to prefer the original noisy ultra-
sound imagesrather than the smoothed versionsbecause
the �lters, no matter how sophisticated they are, can de-
stroy somerelevant image details. However, it is also true
that noisesuppressionin many casessigni�cantly enhances
the visibilit y of someimagefeaturesand it undoubtedly fa-
cilitates automatic imageprocessingtasks such assegmen-
tation. It is thus important to develop such noise �lters,
which canguarantee the preservation of thosefeaturesthat
are of interest to the clinician.

D.1 GenLik method - an overview

A multiresolution denoising method that meets the re-
quirements from Sec.I I-C is, e.g., the method of [12] that
will be called hereafter GenLik for it usesa Generalized
Likelihood ratio formulation [52]. This method is very
conservative in terms of the assumptions made - it as-
sumesonly that the image features of interest propagate
well acrossscalesbut apart from that imposesno partic-
ular prior statistics on the signal and noise. The signal
and noisestatistics are in this method estimated from the
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Fig. 2. Characteristic parts of the GenLik algorithm [12].

image at hand. A good preservation of clinically interest-
ing features is guaranteed not only due to a local spatial
adaptivit y but also due to adaptivit y to the preferenceof
a medical expert-user, who can changethe notion of \fea-
tures of interest" by tuning a single parameter.

The GenLik method uses a non-decimated wavelet
transform and shrinks each wavelet coe�cien t according
to the probabilit y that it presents a signal (or a feature)
of interest, given the observed coe�cien t value and given a
local spatial activit y indicator (LSAI) calculated from the
surrounding coe�cien ts. Weshall suppressthe indicesthat
denote the scaleand the orientation of a wavelet subband.
Let yk and wk respectively denote the noise-freeand the
observed wavelet coe�cien t at position k and let zk denote
LSAI at the sameposition. Further on, let X k denote a
binary random variable being a \signi�cance label" for wk .
The event X k = 1 reads: \ wk represents a signal of inter-
est" (hypothesis H 1) and the event X k = 0 denotes the
opposite (hypothesisH 0). Our denoiseris then

ŷk = P(X k = 1jwk ; zk )wk =
r � k � k

1 + r � k � k
wk ; (4)

where r = P(X k = 1)=P(X k = 0) is the prior ratio and
� k ; � k the likelihood ratios, � k = pW k jX k (wj1)=pW k jX k (wj0)
and � k = pZ k jX k (zj1)=pZ k jX k (zj0), which are estimated
empirically from the input image.

The characteristic parts of this method are in Fig. 2:
in a �rst stage, interscale products are compared against
a threshold in order to locate the signi�cant (\edge") co-
e�cien ts. Optionally , expert knowledge may be used to
tune the threshold de�ning the notion of a signi�cant fea-
ture. This preliminary classi�cation yields a binary mask
x̂ , wherexk = 1 indicates an edgeat position k and xk = 0
indicatesno edge.The maskis in the next stepusedfor the
empirical estimation of the conditional probabilit y density
functions. As Fig. 2 pictorially shows, the likelihood ratios
� k ; � k are �nally subjected to a piece-wiselinear �tting in
a logarithmic representation. The prior ratio is estimated
as r̂ =

P N
k=1 x̂k =(N �

P N
k=1 x̂k ), where N is the number

of coe�cien ts in a given subband.
For a detailed analysis of this method we refer to [12]

and its practical implementation is available for download
at http: ==telin.UGent.be= � sanja.

D.2 Visual enhancement by speckle �ltering

Two main reasonsfor noise suppressionin imagesare:
facilitating the subsequent (semi-)automatic processing

(next Section) and visual enhancement. Visual enhance-
ment of ultrasound images by wavelet �ltering methods
has been illustrated e.g., in [7,10]. In [12], visual results
also demonstrate a gradual speckle suppressioncontrolled
e.g., by a medical expert-user. Fig. 3 demonstratesthe ef-
fect of speckle �ltering on an ultrasound brain image. The
original image (Fig. 3 - left) shows a bleeding in the brain
(which occurs in severecasesof white matter damage)sur-
rounded by speckle noise. After despeckling (Fig. 3 - right)
the bleeding is accentuated much better in the image.

I I I. Ul trasound image fil tering in the clinical
studies of leuk omala cia

A brain disease called Periventricular Leukomalacia,
alsocalledWhite Matter Damageoccursfrequently on pre-
mature neonates.Due to its non-invasive nature and easily
portable devices,ultrasound imaging is the main imaging
modalit y that is nowadays used for the diagnostics and
clinical studies of this brain disease. Since the quantita-
tiv e analysis of medical ultrasound imagesis di�cult and
not well studied yet, physicians depend strongly on the
visual interpretation of the images.

Our contacts with the clinicians in the �eld reveal the
need for developing semi-automatic segmentation meth-
ods. Recent research has produced a few such semi-
automatic segmentation methods, but thesetake little ac-
count of speckle noise. Here we show that using the right
denoising approach as a preprocessingstep improves sig-
ni�can tly the segmentation performance, both in terms
of accuracy and reproducibilit y. We make a performance
comparisonbetweenthe existing segmentation methods as
well as the extensive evaluation of using the proposedpre-
processingstep. In our evaluations we incorporate expert
knowledge, i.e., manual are segmentations by physicians.
We show that in combination with the proposed prepro-
cessingstep our novel integrated semi-automatic segmen-

Fig. 3. Left: the original image with a big brigh t white bleeding,
surrounded by speckle noise. Right: the image denoised with the
GenLik algoritm.
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Fig. 4. Brain a�ected with WMD, delineated white ares. A square
region of interest for texture examination is also shown.

tation method yields results that are similar to manual
delineations by experts.

A. Ultr asoundimaging of Periventricular Leukomalacia

A recent increasein survival rate of preterm infants has
lead to an increasing incidence of neurological sequelae
in such infants [53]. Periventricular Leukomalacia (PVL)
is characterized by deep white matter lesionsadjecent to
the lateral ventricles, Fig. 4. With a prevalenceof 5-15%
among infants born before 32 weeksof gestation, PVL is
one of the best predictors of cerebral palsy in surviving
preterm infants [54]. PVL is related to as well motoric
dysfunction as well as visual disturbance, somatosensory
disordersand cognitive de�cits [55]. Thus, it is important
to try and detect the pathology as early as possible. Cra-
nial ultrasonography is frequently used for the diagnosis
of PVL during the early neonatal period. Although ultra-
sonography is useful and non-invasive it takesa few weeks
or more before the aring becomesvisible [56]. In current
practice, most experts depend solely on the visual inspec-
tion of the imagesfor the diagnosisof PVL [57]. In order to
objectively support this diagnosisthere is a clear demand
for (semi)automated algorithms to delineate the a�ected
regions. The main idea is to extract, in a reproducible
manner, the contours of the disease-a�ectedregions,which
would assist doctors in following the history and the de-
velopment of the diseaseover time.

B. Flare Segmentation

Only a few segmentation techniques were developed so
far for the segmentation of the white aring. The approach
of [58] is based on active contours and uses the Gradi-
ent Vector Flow method of [59] combined with a single-
resolution despeckling method called GATE. Another are
segmentation method [60] is basedon mathematical mor-
phology, and comprisestwo steps: a background reduction
using a texture-feature threshold in di�eren t regionsof in-
terest (see Fig. 4), followed by a closing (to \�ll speckle
holes") and by a morphological gradient (to detect the
contour) . Both of the above described segmentation tech-
niquesdemandsomeform of user-interactivit y by choosing
the initialization points in caseof the snakesor the bound-

Fig. 5. Top left: snake + GATE, Top middle: snake + Genlik,
Top righ t: manual expert delineation. Bottom left: morphology ,
Bottom middle: morphology + postpro cessing + Genlik, Bottom
righ t: manual expert delineation.

ing box in which the background reduction is performed in
the caseof the morphological technique.

Although both techniques of are rather fast they still
lack some stabilit y due to the presenceof speckle noise.
The snake algorithm canget stuck on isolated, bright spots
even if the parameters are well tuned, as can the mor-
phological technique where little islands can occur after
gradient operations. These artefact are clearly visible in
the left hand imagesof Fig. 5. An improved morphologi-
cal approach is recently developed in [61], which includes
a morphological postprocessingcalled \op ening by recon-
struction". The result of this approach can be seenin the
lower part of Fig. 5.

C. Despeckling and Segmentation Accuracy

We wish to investigate how denoisinga�ects segmenta-
tion accuracycomparedto an expert-de�ned ground truth.
For our experiments, we selected eight images in which
the a�ected tissue (aring) was clearly visible and asked
a medical expert to manually segment the images. These
manual delineationsmadeby the medical expert are in the
following usedas ground truth segments.

We segmented all the tested images using the snake-
technique and the improved morphological technique de-
scribed above. For both approaches we made two sets
of experiments: without preprocessingand with the pre-
�ltering using the Genlik algorithm from SectionI I-D. The
parameter settings used for the morphology based tech-
nique are: a plexus threshold value of 0.9, a dilation radius
of 4, an erosionradius of 3 and a preprocessingradius of 2.
The parameter settings used for the active contours were
� = 0:2, � = 0:1, � = 0:05, � = 0,  = 1 and � = 0:05
using 80 iterations to compute the Gradient Vector Flow
and 40 to iterate the snake. As threshold for the denois-
ing technique we selectedthe T parameter in the interval
[0; 2] and useda wavelet decomposition up to scaleJ = 3
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Fig. 6. Dice-coe�cien ts for both techniques without and with the
Genlik denoising.

and a window size of 5 � 5. As a comparison measure
between the segmentations the Dice-coe�cien t was used.
Given two segmentation A and B , the Dice-coe�cien t DC
is calculated as

DC =
2kA \ B k

kAk + kB k
(5)

where kAk stands for the cardinalit y, pixel surface, of A
and A \ B is the intersection of A and B . The closer the
Dice-coef�cient approaches1, the more the segmentations
are similar, i.e., the better they overlap.

Fig. 6 showsthe Dice-coe�cien ts for both techniquesand
for the eight test images,segmented without and with the
tested wavelet denoising technique. The imagesof Fig. 5
give a visual idea of how the segmentations look like after
denoising compared to the expert delineations. Both the
Dice-coe�cien ts and the visual appearance demonstrate
that the use of wavelet despeckling improves the segmen-
tation accuracy measuredwith respect to manual delin-
eations by a medical expert.

D. Despeckling and Segmentation Reproducibility

Next we study the e�ect of wavelet denoisingon the seg-
mentation stabilit y or reproducibility of its results. Since
in our evaluations the improved morphological segmenta-
tion outperformed the one on active contours, we focused
on the morphological technique for our next experiment.
We constructed two setsof test images,which are actually
the same eight images as used above, without and with
denoising. Out of both test-sets,we let the computer pick
an imagerandomly which waspresented to the medical ex-
pert to segment. This continueduntil each of the 16 images
was picked and segmented 3 times. We did this in order
to scramble the imagesand prevent the user of using prior
information if asked to segment the sameimage multiple
times. After this segmentation part, the Overlap Ratio
(OR) of each group of three segmentations wascalculated,
again using the Dice-coe�cien t. The results are shown in
Table I. Theseresults are in favor of wavelet denoising: for
seven out of eight imagesthe reproducibilit y improvesdue
to pre-�ltering with the analyzedwavelet basedmethod.

E. Conclusions on Despeckling for Flare Segmentation

A mini-study on ultrasound brain image segmentation
that is presented in this Sectionundoubtedly demonstrates

OR (%) no denoising OR (%) Genlik

image 1 92.60 93.60

image 2 92.26 92.30

image 3 90.34 95.35

image 4 89.80 91.67

image 5 91.32 93.56

image 6 95.75 95.79

image 7 92.09 94.34

image 8 98.80 91.67

TABLE I
Overlap Ratios f or the tw o test set without and with

Genlik denoising

the usefulnessof wavelet domain noisereduction in this ap-
plication. As can be seenfrom Fig. 5, after denoising the
segmented contours are lessfragmented, and are closer to
the manual segmentations by medical experts. Our exper-
iments demonstrated that the reproducibilit y of the seg-
mentation also improves after wavelet domain denoising.
This provesthat indeedthere is a real meaningto the noise
reduction as a pre-processingstep in this application.

Compared to the analyzed single-resolution GATE de-
speckling method for ultrasound images,the testedwavelet
�lter proved advantageous, both visually (Fig. 5) and in
terms of objective performance measures(Fig. 6). It is
worth mentioning that the morphological segmentation
technique of [61] analyzed here with the wavelet domain
Genlik denoiseris nowadays already tested in clinical prac-
tice at the neonatologydepartment of the So�a Children`s
Hospital Rotterdam, The Netherlands.

IV. Denoising MRI images

In magnetic resonanceimaging the practical limits of the
acquisition time imposea trade-o� betweenSNR and im-
age resolution (see,e.g., [62{64]). The acquisition time is
limited in practice due to the patient comfort and physi-
cal limitations (especially in dynamic applications, such as
cardiac imaging and functional MRI [65]). Post-processing
noise reduction is therefore often seenas the only means
of achieving a desired MRI image quality. Wavelet based
denoising methods for MRI and f MRI images include
[4,6,11,12,17]. The �rst oneswere basedon simple soft-
thresholding [17], and the more recent onesoften incorpo-
rate the coe�cien t propagation acrossscalesin the form
of multiscale products [4,11,26] and combining thesemul-
tiscale products with the spatial context [12].

A. Noise in MRI

The main sourceof noise in MRI imagesis the thermal
noise in the patient [66]. The MRI image is commonly
reconstructed by computing the inverse discrete Fourier
transform of the raw data [63]. The signal component of
the measurements is present in both real and imaginary
channels; each of the two orthogonal channels is a�ected
by additiv e white Gaussiannoise. The noise in the recon-
structed complex-valued data is thus complex white Gaus-
sian noise.

Most commonly, the magnitude of the reconstructed
MRI image is usedfor visual inspection and for automatic
computer analysis. Since the magnitude of the MRI sig-
nal is the square root of the sum of the squaresof two
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Fig. 7. Left: an original MRI image magnitude. Right: the result
of a wavelet denoising metho d for Rician noise from Section IV-B.

independent Gaussianvariables, it follows a Rician distri-
bution. In low intensity (dark) regions of the magnitude
image, the Rician distribution tends to a Rayleigh distri-
bution [67] and in high intensity (bright) regions it tends
to a Gaussian distribution. A practical consequenceis a
reducedimage contrast: noise increasesthe mean value of
pixel intensities in dark image regions.

Due to the signal-dependent mean of the Rician noise,
both the wavelet and the scalingcoe�cien ts of a noisy MRI
imageare biased estimatesof their noise-freecounterparts.
In [65] it was shown that one can e�cien tly overcomethis
problem by �ltering the square of the MRI magnitude im-
age in the wavelet domain. In the squaredmagnitude im-
age, data are non-central chi-square distributed, and the
wavelet coe�cien ts are no longer biasedestimatesof their
noise-freecounterparts. The bias still remains in the scal-
ing coe�cien ts, but is not signal-dependent and it can be
easily removed: at the resolution scale2j , from each scal-
ing coe�cien t 2j +1 � c should be subtracted, where� 2

c is the
underlying complex Gaussiannoisevariance. This value is
typically estimated from the noisy image: MRI imagesin-
clude an empty region of air outside the patient; in the
squaredmagnitude image, the averagepixel value in those
empty (border) regions is 2� 2

c .

B. Adapted GenLik method for Rician noise

According to the explanation given above, the GenLik
algorithm from SectionI I-D should be adapted for the sup-
pression of Rician noise in MRI image magnitude as fol-
lows:

- Compute the squareof the MRI magnitude image;
- Compute the non-decimatedwavelet transform with L

decomposition levels (in practice, we usedL=4);
- Estimate the wavelet coe�cien ts as described in Sec-

tion I I-D;
- Subtract 2L +1 � c from the scaling coe�cien ts;
- Apply the inversewavelet transform;
- Compute the squareroot of the image.
Fig. 7 illustrates the application of this method to one

real MRI image magnitude, and in the next Section, we
study its application to f MRI images.

V. Denoising of functional MRI ( f MRI) time
series

This sectionanalyzesa number of wavelet-baseddenois-
ing schemesfor f MRI time seriesdata experimentally .

A. Analysis of fMRI data

An f MRI data set is a sequenceof three-dimensional
(3D) MR images,recordedwhile the personin the scanner
performs a speci�c task. Most f MRI analysismethods are
basedon the general linear model (GLM), which models
the total brain responseasthe superposition of all individ-
ual stimulus responses[68]. In the GLM, the responseto
each stimulus is modelled as the output of a linear, time-
invariant (LTI) system. Such a system is characterisedby
its impulse response,which, in the caseof f MRI analysis,
is denotedasthe haemodynamic responsefunction (HRF).
The response signal to each type of stimulus is given by
the convolution of the time pattern in which thesestimuli
occur, and the HRF corresponding with that type of stim-
ulus. Such a responsesignal is called an e�ect of interest.

The analysis of f MRI data in the GLM is done via the
following formula:

Y [T � N ] = X [T � M ] � [M � N ] + e[T � N ] : (6)

Here, Y is the f MRI data of T time points and N vox-
els (volume elements), X is the design matrix , whoserow
vectors are the modelled e�ects. These may be e�ects of
interests (such as modelled response)and e�ects of no in-
terest (such as movement-related artefacts or cardiac sig-
nals). The matrix � contains the weight of each e�ect in
each voxel. The residual signal (the part of the signal not
modelled in X ) ends up in the matrix e. The brain re-
gions that have a signi�cant contribution to the task are
selectedvia hypothesistesting, i.e., regionswhosevoxel lo-
cations have signi�cantly high values in the row of � that
corresponds to the task, are consideredsigni�cant.

Hypothesis testing may be done with either paramet-
ric [69] or nonparametric [70] statistical methods. The
latter have the advantage that they do not require any as-
sumptions about the distributions of the noise. The main
advantage of the former is that they are computationally
lessdemanding, while the methods are quite robust to de-
viations from the assumednoisedistribution (which is usu-
ally Gaussian). Most hypothesis tests compare the mag-
nitude of the e�ects of interest with a threshold basedon
the distribution of the noise in the data. After the trans-
formation described in (6), a good estimate for the noise
(provided the predictable e�ects are modelled as well as
possibleby X ) is given by e. Smaller values in e lead to
lower statistic thresholds, and therefore better detection.
Good denoising methods lower the noise amplitudes, but
keepthe signal intact.

B. Tested waveletdenoising methods for fMRI

The most common preprocessing step in f MRI data
analysis is to apply a Gaussian smoothing, i.e., by �l-
tering the imageswith a lowpassGaussiankernel. Gaus-
sian smoothing decreasesthe noise amplitude, but it also
changesthe shape of the signal. Speci�cally , �ne (high-
frequency) featuresin the imagesare obscuredby smooth-
ing. We examinethe performanceof wavelet-baseddenois-



8 SUBMITTED TO CURRENT MEDICAL IMA GING REVIEWS

Fig. 8. T op ro w - images used in the experiment: (a) the activ e region with a line pro�le (solid line) tak en from the image (dotted line), (b)
the noise-free template image from the Br ainWeb simulator with the activ e region shown in white, (c) the BOLD image made by subtracting
two noisy images with SNR = 18 dB. Middle and b ottom ro ws - denoising results: (d) GenLik for Rician noise (SNR=4.5 dB), (e) basic
GenLik (SNR=7.9 dB), (f ) InvShrink (SNR=3.0 dB), (g) the MinMaxThr esh (SNR=3.6 dB), and (h) Gaussian smoothing with FWHM =
1 pixel (SNR=3.3 dB) and (i) FWHM = 4� 4 pixels (SNR=3.2dB).

ing methods in the setting of f MRI analysis,by comparing
them with the traditional Gaussiansmoothing.

The WaveLab package [71] contains some of the most
well-known wavelet-baseddenoisingmethods in usetoday.
They have been demonstrated in the f MRI setting and
comparedto Gaussiansmoothing [72]. In that paper, tests
are done on synthetic BOLD images,constructed by sub-
tracting pairs of MR imageswhich both contain synthetic
Rician noise[?,73,74]. The activation time signal is a block
signal. Another test is done on a real data set, also with a
block activation pattern.

We use the WaveLab-based methods InvShrink and

MinMaxThr esh, presented in [72]. We also use the Gen-
Lik denoising method of [12], both in its basic form, as
described in Section I I-D, and with the adaptation for Ri-
cian noise,which consistsin applying the samemethod to
the squared image and compensating for the bias in the
scaling coe�cien ts (see Sec. IV-B). Finally, we use two
degreesof Gaussian smoothing: FWHM (FWHM = full
width at half maximum) = 4� 4� 4 mm3 (or one pixel)
and FWHM = 12� 12� 12 mm3 (or 4� 4 pixels).



9

Fig. 9. Denoising arti�cial bold images (left) using a soft-
thresholding metho d BayesShrink of [23] (middle) and using the
Genlik metho d (righ t).

C. Arti�cial BOLD images

The blood oxygenation level dependent (BOLD) con-
trast is computed as the di�erence between two MR im-
ages. These two MR imageshave Rician distributed grey
values. The distribution of the di�erence of two Rician
sets is symmetric and near-Gaussian[72]. We useda sim-
ulated MR image from the BrainWeb simulator [75] with-
out noise. Rician distributed noisewith a known SNR was
added to 2 copiesof the image, of which one contained an
active spot (seeFig. 8a-b), where the signal was increased
by 5% of the maximum grey value. After adding the noise,
the imageshad an SNR of 18 dB. The BOLD image made
by subtracting the images (see Fig. 8c) had an SNR of
-0.1 dB. After applying the preprocessingsteps described
above, the SNR was measuredagain.

Figure 8(d-i) shows the results for the tested methods.
The denoisedBOLD image is presented and overlaid with
a cross-sectionof the image(�xed line) at a location inside
the active region (indicated by the dotted line). All the
tested wavelet methods outperform the Gaussiansmooth-
ing (Fig.8i) and the basicGenlik method from SectionI I-D
achievesthe best result (Fig. 8d). Fig. 9 comparesthe per-
formance of the Genlik method and the Bayesianwavelet
thresholding method BayesShrinkof [23], which usesa uni-
form threshold per subband that is optimized in terms of
the mean-squarederror. This �gure illustrates that wavelet
basedmethods can preserve the shape of the activated re-
gion remarkably well even in casesof severe noise. In this
respect, it is however advantageousto usea sophisticated
locally adaptive wavelet method instead of a global thresh-
olding with a uniform threshold per subband.

D. Time series of MR images

A sequenceof real MR imageswasrecordedwithout pre-
senting stimuli. This null experiment is assumedto con-
tain only noise [76]. The images are gradient echo EPI
images collected with a Bruker Medspec 3.0T system at
the Wolfson Brain Imaging Centre, Cambridge. The im-
agesare64� 64� 21voxels,with voxel size3.9� 3.9� 5 mm3.
Realignment and spin excitation history correction were
done with BAMM software [77], to remove as many arte-
facts as possiblefrom the data. Activ ation with a spatial

Fig. 10. The shape of the activ e region: (a) transv erse view, (b)
sagittal view and (c) coronal view.

Fig. 11. (a) The stim ulus sequence. (b) The damped harmonic
oscillator HRF that was used to model the activ ation (i ) and the
gamma density HRF (ii ) that was used to estimate the GLM. (c) The
modelled response.

pattern as shown in �g. 10 was added to the data. The
time pattern of the activation was made by convolving a
randomisedstimulus sequence(see�g. 11a) with a haemo-
dynamic responsefunction (HRF). The HRF describesthe
changesin regional blood o w (and therefore also in the
f MRI time signal) following a very short stimulus. We
model the HRF as the impulse response function of a 4-
element windkessel[78,79], which is a damped harmonic
oscillator (see �g. 11b). The parameters of the function
were chosenso as to resemble somemore common HRFs,
such as the onecomposedof two gammadensity functions
(see�g. 11b). Figure 11c shows the time signal.

After adding the activation, copiesof the MRI time se-
ries were processedwith the di�eren t methods. Each de-
noised version of the time serieswas then analysed with
the SPM software [69]. The matrix X [see6] consistedof
an `expected' responseand a constant signal (to represent
the time seriesmean). To make the experiment more real-
istic, the estimated responsewas not completely the same
as the `real' response: the responsein X was constructed
by convolving the stimuli with the gamma denisty HRF.

After estimating the GLM, the variance ratio was com-
puted in each voxel. The variance ratio is the amount of
varianceexplainedby the model, divided by the amount of
variance in the residual. Activ e regionswere found by per-
forming an F -test on the voxels in the parametric maps.
Activ ated regions(after thresholding the mapsat p=0.001)
are shown in Fig. 12.
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Fig. 12. Statistical maps of the time series after di�eren t prepro cessingsteps: (a) Genlik metho d adapted for Rician noise (b) basic Genlik ,
(c) InvShrink , (d) MinMaxThr esh, and (e) Gaussian smoothing with FWHM = 4 � 4 � 4 mm 3 and (f ) FWHM = 12 � 12 � 12 mm3 .
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E. Discussion on fMRI denoising

The results on the tested real MRI sequence,presented
above show that despite the various models that exist for
f MRI noise (both spatial and temporal), the real caseis
usually still hard to analyse. When the Genlik method
is applied to the squared image (Rician noise version), a
largeareais detectedaround the original spot, that is quite
di�eren t in shape than the original active region. This is
due to the local variance component used to predict the
local distributions of noiseand signal. EPI imageshave low
contrast, and the (erratic) shapes found in the brain bias
the classi�cation. The basicGenlik method (applied to the
original and not squaredimage) is much moreconservative,
and detects only a portion of the original region. The
number of false positives,however, is also very small.

The WaveLab-methods from [72] perform similarly to
the latter one. Large portions of the original spot ar miss-
ing, but there are few false positives.

Gaussiansmoothing with a kernelof 4� 4� 4 mm3 (which
is a bit smaller than the voxel size) gives quite good re-
sults. The shape of the original activation is well detected.
The number of false positives is larger than those of the
Gaussiannoiseand wavelet-basedmethods, but the num-
ber of false positives is lower. Gaussian smoothing with
a large smoothing kernel (12� 12� 12 mm3) gives the no-
torious smoothing-related deformations: heavily deformed
detected regions with many false positives, and large de-
tected areasat other locations.

A possible explanation for the di�erence between the
results of the simulations and this real data example is
that the Genlik method is tuned to too �ne resolution as
compared to the f MRI sequencewe experimented with.
Also, the performanceof the WaveLab may be a�ected by
violations of the assumptionsabout the noisedistribution
(Gaussiansmoothing doesnot usesuch assumptions,while
WaveLab methods do). Another explanation may be the
presenceof disturbing factors in the data, which need to
be removed before a proper analysis can be done. One
important thing to consider is that when the assumptions
used by the denoising algorithms do not hold, it is not
likely that statistical tests basedon theseassumptionscan
be applied correctly. In the caseof statistical mapping, the
nonparametric approach [70,80]may bea good alternativ e.

VI. Conclusion

In this paper somepractical applications of wavelet do-
main denoising in ultrasound and in MRI imaging were
demonstrated. The presented results demonstrate the use-
fulnessof wavelet denoisingfor visual enhancement of im-
agesas well as for improving somefurther automatic pro-
cessinglike the segmentation of ultrasound images.

In caseof the ultrasound imaging, the interactive noise
reduction scheme, taking into account prior information
as well as local regional statistics lead to a more naturally
ultrasound image,in which anatomical featureswerebetter
kept intact. This preprocessingstep undeniably lead to a
more stable, reproducible segmentation than was known
up to now. We obtained contours that are more similar to
the delineations of the medical experts and were able to
prove that as well visually as mathematically. In current
medical practice, this means that the experts, once they
classi�ed the imageasbeing malignant, by setting a simple

threshold can visualize the pathology.
In caseof f MRI, wavelet baseddenosingmethods have

shown to be e�ectiv e in terms of improving SNR as well
as preserving the shape of the activated region. It has
to be mentioned, however, that the results on real f MRI
data, where denoising was combined with the statistical
parametric mapping, were somewhat disappointing com-
pared to the purely simulated cases.There is still a delicate
tradeo� betweensensitivity (the abilit y to detect the target
region) and speci�cit y (the abilit y to not detect non-target
regions)in f MRI analysis. New wavelet-basedmethodsare
currently in development, and will hopefully contribute to
�nding the optimal balance between detection power and
control of false positives.
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