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Abstract. We propose a fuzzy logic recursive scheme for motion
detection and spatiotemporal filtering that can deal with the Gauss-
ian noise and unsteady illumination conditions in both the temporal
and spatial directions. Our focus is on applications concerning track-
ing and denoising of image sequences. We process an input noisy
sequence with fuzzy logic motion detection to determine the degree
of motion confidence. The proposed motion detector combines the
membership of the temporal intensity changes, appropriately using
fuzzy rules, where the membership degree of motion for each pixel
in a 2-D sliding window is determined by a proposed membership
function. Both the fuzzy membership function and the fuzzy rules
are defined in such a way that the performance of the motion detec-
tor is optimized in terms of its robustness to noise and unsteady
lighting conditions. We simultaneously perform tracking and recur-
sive adaptive temporal filtering, where the amount of filtering is in-
versely proportional to the confidence in the existence of motion.
Finally, temporally filtered frames are further processed by a pro-
posed spatial filter to obtain a denoised image sequence. Our main
contribution is a robust novel fuzzy recursive scheme for motion
detection and temporal filtering. We evaluate the proposed motion
detection algorithm using two criteria: (1) robustness to noise and to
changing illumination conditions and (2) motion blur in temporal re-
cursive denoising. Additionally, we make comparisons in terms of
noise reduction with other state of the art video denoising
techniques. © 2006 SPIE and IS&T. �DOI: 10.1117/1.2201548�

1 Introduction
In digital video, the general motion detection problem is
quite complex because it is not always easy to distinguish
illumination changes from real motion and because of the
aperture problem �caused by a narrow field of view�. As
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such, “close to perfect” solutions tend to be very time-
consuming. However, in many applications it is sufficient
to detect changes in the scene rather than actual motion,
and even to detect only some of the changes. In this paper,
we consider motion detection in terms of robust change
detection against noise and slowly varying illumination
conditions. This means that our method will not be able to
distinguish completely, changes due to motion from other
changes due to rapidly varying illumination, scene cuts, fast
camera zoom, panning, etc. Despite these restrictions, there
are numerous applications for this kind of motion detection
scheme. It can be used for surveillance objectives, e.g., to
monitor a room in which there is not supposed to be any
motion, or the detection results can be a useful input for
more advanced, higher level video processing techniques,
such as the tracking of objects through time �e.g., Refs.
1–4�. Other applications are noise removal5–11 and
deinterlacing12,13 where one applies temporal filtering de-
pending on the outcome of the motion detector.

Given the outlined restrictions, the main problem to be
tackled is to distinguish image noise, caused by various
sources, from real changes in picture intensity. Addition-
ally, we try to adapt the method to changing illuminating
conditions in both the spatial and the temporal directions. A
trivial and very fast �but not very good� solution for pixel-
by-pixel change detection is to simply subtract the gray
levels of successive frames, and to conclude that the pixel
has changed when the difference exceeds a given threshold.
Because only one pixel is considered at a time, the compu-
tational cost is quite low.

While this technique works reasonably well at low noise
levels, the performance degrades rapidly with increasing
noise level. Also in practice, the threshold must be tuned to

the noise level, which must be estimated on a global or
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local basis. To tackle the noise problem, some more sophis-
ticated techniques are required. One could examine regions
with more than one pixel, and define and calculate some
characteristic functions �e.g., the spatial average in a win-
dow of pixels�, as in Refs. 4, 14, and 15, at the expense of
an increased complexity.

In this paper, we propose an alternative approach for
motion detection and video denoising. We restrict ourselves
to a recursive algorithm requiring a small number of com-
putations.

The idea is to use adaptive thresholding, where the
threshold is adapted to the local gray-scale statistics and to
the spatial context of the pixel. The resulting method is
highly insensitive to noise as well as to slow illumination
changes. Moreover, it is locally adaptive, i.e., it adapts it-
self to spatially varying noise. In Ref. 16, some more com-
plex techniques to obtain a threshold based on the noise or
signal properties are proposed and applied to simple frame
differencing. Our method is different, since it uses data
coming from a longer period of time, and the threshold is
adapted to both temporal and spatial information.

It is quite obvious that different applications require dif-
ferent approaches. In the case of motion detection for track-
ing, it is important that more or less only “real” motion is
detected: the goal is to detect moving objects. This means,
on the one hand, that if the input sequence is noisy, we do
not want the noise to be labeled as motion, while on the
other hand, it is not that important to detect every single
changed pixel of an object. However, in the case of motion
detection for denoising, where the detection result is used
for temporal filtering, undetected changes can lead to �un-
wanted� motion blur, which is much more relevant to image
quality than falsely labeled pixels due to noise. By using
fuzzy logic we aim to define a confidence measure with
respect to the existence of motion, called hereafter �the de-
gree of� motion confidence. Based on the defined motion
confidence, we optimize temporal denoising and motion de-
tection.

We show the video denoising performance in terms of
peak signal-to-noise ratio �PSNR�; a newly defined objec-
tive measure; i.e., peak temporal signal-deviation-to-noise
ratio �PTSDNR� and in terms of visual quality �subjective

Fig. 1 Proposed algorithm framework.
measure�. Additionally we demonstrate the motion detec-
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tion performance of the new technique in terms of the PTS-
DNR and its robustness to varying noise levels and illumi-
nation conditions.

Section 2 presents the general framework of the algo-
rithm for simultaneous motion detection and video denois-
ing, and we show the main blocks of the proposed algo-
rithm. Subsequently, the proposed fuzzy logic recursive
motion detector is explained in Sec. 3. In Sec. 4.1, we
evaluate parameters used for the recursive temporal filter-
ing and the spatiotemporal adaptive noise level detection,
while in Sec. 4.2, a spatial filter is introduced. Finally, ex-
perimental results are given in Sec. 5 and conclusions are
drawn in Sec. 6.

2 Novel Proposed Scheme For Simultaneous
Motion Detection and Video Denoising

In this paper, a novel algorithm for simultaneous motion
detection and video denoising is presented. The method is
intended for processing noisy image sequences corrupted
with white Gaussian noise, which is not necessarily station-
ary in space and time, and with spatiotemporal illumination
changes. The proposed algorithm is depicted in Fig. 1.

We first process a noisy input sequence with the fuzzy
logic motion detection using the current noisy �In� frame
and the previous temporally processed �Ip� frame to deter-
mine the degree of motion confidence. The degree of mo-
tion confidence is expressed as a real number between two
extremes: zero �no motion for sure� and one �motion for
sure�, in a fuzzy logic manner.17,18 Specifically, the pro-
posed fuzzy-logic-based motion detector combines several
pixels from a 2-D neighborhood of the difference image:

��x,y,t� = �In�x,y,t� − Ip�x,y,t − 1�� . �1�

The combination is performed in a fuzzy manner to deter-
mine the motion confidence ��x ,y , t� �explained in Sec.
3.2� for a certain spatiotemporal position �x ,y , t�.

Next, the estimated motion confidence is used for mo-
tion detection �tracking� and for video denoising. For de-
tection of motion, we perform the following motion confi-

Table 1 Common fuzzy intersection �conjunction� operators.

Fuzzy Intersection A�B �Conjunction �A�u�Ù�B�u��

Minimum min��A�u� ,�B�u��

Algebraic product �A�u��B�u�

Bounded product max �0, �A�u�+�B�u�−1�

Drastic product ��A�u�, �B�u�=1

�B�u�, �A�u�=1

0, �A�u� ,�B�u��1 �
dence thresholding:
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MD�x,y,t� = �true ��x,y,t� � �

false otherwise,
	 �2�

where the threshold � depends on the video sequence’s
resolution and on the application. By thresholding we de-
termine two states of the motion detector: motion true and
motion false. Subsequently, the estimated information can
be used for motion tracking �in that case, motion informa-
tion is combined with image segmentation� of the noisy
video sequence. However, in this paper, we concentrate on
denoising and reliable motion detection.

In the proposed algorithm, motion confidence ��x ,y , t�
is used to determine the parameters ��x ,y , t� and ��x ,y , t�
for temporal recursive filtering and spatiotemporal adapta-
tion of the algorithm to a changing noise level and illumi-
nation, respectively �see Sec. 4.1�.

Based on the determined parameter ��x ,y , t� we perform
a spatiotemporal adaptation of the noise variance 	�x ,y , t�
for each pixel position �x ,y , t�. For the first frame only, we
estimate the noise standard deviation using the method of
Ref. 19 �for the whole frame, i.e., 	�x ,y , t�=	0� and then
adapt it throughout the sequence for each position 	
=	�x ,y , t�, separately. This spatially local adaptation of
noise standard deviation estimate 	�x ,y , t�, is realized by
recursive averaging. The higher is the degree of motion
confidence ��x ,y , t�, the closer is the current value 	�x ,y , t�
to the previous value 	�x ,y , t−1�:

	�x,y,t� = �1 − ��x,y,t��
�x,y,t� + ��x,y,t�	�x,y,t − 1� . �3�

The parameter 
�x ,y , t� represents a rough estimate of the
local averaged changes �due to noise, motion, and illumi-
nation changes�, at position �x ,y , t�, and is defined as fol-
lows:


�x,y,t� =



i,j=−1

1

���x + i,y + j,t��

9
. �4�

The idea of Eq. �3� is to update 	�x ,y , t� at each time
instant t, and for each spatial position �x ,y�, when no sig-

Table 2 Common fuzzy union �disjunction� operators.

Fuzzy Union A�B �Disjunction �A�u�Ú�B�u��

Maximum max ��A�u� ,�B�u��

Algebraic sum �A�u�+�B�u�−�A�u��B�u�

Bounded sum min �1, �A�u�+�B�u��

Drastic sum ��A�u�, �B�u�=0

�B�u�, �A�u�=0

1, �A�u� ,�B�u��0 �
nificant motion is detected �motion confidence is relatively
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small� and to prevent updating in case when motion confi-
dence ���x ,y , t�� is relatively large. This is done by chang-
ing ��x ,y , t�.

Another parameter ��x ,y , t� controls the amount of fil-
tering based on the estimated noise level and the motion
confidence. This parameter ��x ,y , t� is directly proportional
to the estimated motion confidence, and takes values �
� �0,1�. As detailed in Sec. 4.1, we employ ��x ,y , t� as a
weighting factor within a classical recursive scheme:

Ip�x,y,t� = ��x,y,t�In�x,y,t� + �1 − ��x,y,t��Ip�x,y,t − 1� .

�5�

Note that the motion confidence ��x ,y , t� depends on the
noise standard deviation from the previous frame 	�x ,y , t
−1� �see Sec. 3.2�, because the noise estimate 	�x ,y , t� is
not known at that stage �see Fig. 1�. Consequently, the pa-
rameters ��x ,y , t� and ��x ,y , t� are also influenced to some
degree by a 	�x ,y , t−1�.

Subsequently, a spatial filter �Sec. 4.2� is applied to the
temporally filtered frame �out of the recursive loop�. Since
the temporally filtered frames will contain nonstationary
noise �in some areas of the image the remaining noise is
stronger than in other areas�, the proposed spatial filter aims
at spatially local adaptation to the estimated �detected�
noise level and image structures.

As we can see in Fig. 1, the temporal filter and the fuzzy
logic motion detector work in a closed loop, i.e., in a re-
cursive manner where at each step the result �performance�
of each module is improved by the other. We develop a
novel fuzzy logic recursive motion detection scheme �Sec.
3� that provides us with a reliable motion detection. Spe-
cifically, as the output of the motion detector we obtain
motion confidence degree ��x ,y , t�, which is used to deter-
mine the optimal parameters for the temporal filtering and
adaptation of the algorithm to changing noise level and
illumination changes.

3 New Fuzzy Logic Recursive Motion Detector
In our previous work19 we introduced a binary motion de-
tector, which can distinguish only between motion and no
motion. This motion detector was used to control the spa-
tiotemporal filter by switching the temporal filter on or off.
A disadvantage of this hard switching was that in the case
of higher noise levels, due to motion ambiguities, the filter
introduced motion blurring and artifacts, resulting in a re-
duced denoising performance. This is due to the “hard”
nature of the decision process �wrong decisions are propa-
gated�.

Recently, in Ref. 20, a recursive scheme for change de-
tection applied to motion tracking in the presence of low
noise levels was proposed, where only information from
the current and from the previously processed �temporally
accumulated� frame was used to detect motion, aiming at
reducing memory requirements. However, the motion de-
tector was binary, and consequently was not well suited for
motion detection in the presence of higher noise levels and
for video denoising.

In this paper, we propose a fuzzy logic recursive motion
detector for both video denoising and tracking. The deter-

mined degree of the motion confidence is expressed as a
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real number between zero �no motion for sure� and one
�motion for sure�, instead of the binary logic decision, that
is, motion or no motion. This provides more freedom �ad-
aptation possibilities� concerning further processing tasks:
recursive temporal filtering and spatiotemporal adaptation
of the noise estimate, as explained in Sec. 4.1.

The main idea of the proposed motion detection algo-
rithm is to sum the contributions concerning the motion
presence for groups of temporal pixel differences from a
small neighborhood. This is different from other more gen-
eral motion detection techniques that are based on simply
averaging all pixel differences or determining the number
of pixel differences that are above a certain predefined
threshold, in a small neighborhood. In the proposed tech-
nique, the contribution of the �temporal pixel difference�
groups depends on both the local noise level estimate and
the locally estimated reliability of the motion presence. The
larger is the reliability relative to the estimated noise level,
the larger will be the contribution from the corresponding
group of pixel differences.

The proposed motion detection scheme is explained us-
ing a fuzzy logic framework, since fuzzy logic is suitable
for describing processes with uncertainties �concerning mo-

Table 3 Fuzzy rule set �Ù, AN

Rule Antecede

R1 $i1,j1,i2,j2,i3,j3=−K
K �BF1ÙB

R2 "i1,j1,i2,j2,i3,j3=−K
K �SF1ÚS

��i1 , j1�� �i2 , j2�� �i3 ,

Subfact Fact

SF1 ��x ,y , t�=SMALL

SF2 ��x+ i1 , y+ j1 , t�=SMALL

SF3 ��x+ i2 , y+ j2 , t�=SMALL

SF4 ��x+ i3 , y+ j3 , t�=SMALL
Fig. 2 Membershi
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tion in our case�. The uncertainties at lower processing lev-
els �temporal pixel differences� are combined in a specific
way �using fuzzy rules� to obtain a meaningful result at a
higher processing level �motion confidence�. Namely, the
main problem in motion detection is to distinguish between
large pixel differences caused by noise and large pixel dif-
ferences caused by motion. Actually, there will be a gradual
transition from small differences caused by noise to very
large differences caused by motion. Fuzzy set theory is a
natural extension of the classical binary logic, where such
kinds of gradual transitions are modeled by means of a
proper membership function. Consequently, we argue that a
fuzzy logic framework is more appropriate than a nonlinear
filter scheme �which could also have been used� in this
particular case. This is mainly because of the fuzzy logic
solution flexibility and construction simplicity, concerning
the combination problem of different uncertainties. Never-
theless, the fuzzy logic framework can be easily optimized
to be of low implementation complexity and requiring a
small number of calculations.

R; $, there exists; ", for all�.

Consequent

3ÙBF4� M�x ,y , t�=true

3ÚSF4� M�x ,y , t�=false

i1,2,3 , j1,2,3�� �0,0��

Subfact Fact

BF1 ��x ,y , t�=BIG

BF2 ��x+ i1 , y+ j1 , t�=BIG

BF3 ��x+ i2 , y+ j2 , t�=BIG

BF4 ��x+ i3 , y+ j3 , t�=BIG
D; Ú; O

nt

F2ÙBF

F2ÚSF

j3��Ù ��
p functions.
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3.1 Fuzzy-Logic-Based Information Processing
Fuzzy set theory �fuzzy logic� is an extension of classical
�crisp� set theory called binary logic.17 It handles the con-
cept of partial membership �partial truth�. In fuzzy logic
theory the membership degree can be taken as a value in-
termediate between zero and one. This is an extension of
the black-or-white situation of classical set theory where no
partial membership can be modeled. Fuzzy sets are gener-
ally represented by membership functions, i.e., a mapping
from the underlying universe into the unit interval �0,1�.

The membership function of the intersection of two
fuzzy sets A and B �A�B�, in a universe U, is modeled by
triangular norm18,21 �see Table 1 for some examples�, while
the membership function of the union of two fuzzy sets A
and B �A�B�, in a universe U, is modeled by triangular
co-norm18,21 �see Table 2 for some examples�. Additionally,
we denote �A�u� and �B�u� as the corresponding member-
ship in the fuzzy sets A and B, respectively, where u is an
element of the universe U. For a more detailed description
concerning fuzzy logic, refer to Refs. 22 and 23.

3.2 Motion Detection
In the proposed motion detection algorithm, particular
groups of the temporal pixel differences �from a small spa-
tial neighborhood� are analyzed and combined in a mean-
ingful way to determine the motion confidence for each
�central� pixel position �x ,y , t�. For each group of pixel
differences ��x ,y , t�, we determine the local motion de-
gree, which represents the contribution of the group, con-
cerning the motion presence. Specifically, to determine the
motion confidence for the central position �x ,y , t�, we first
compute the membership degree for each temporal pixel
difference in a spatial neighborhood �the membership cor-
respond to the output of a membership function for the
input temporal pixel difference�. Subsequently, different
combinations �defined by the fuzzy logic rules� of the
membership degree for the central pixel position and the
neighboring membership are evaluated, for each group of
the temporal pixel differences. In the final step, such deter-
mined local motion for the groups are again combined by
the defined fuzzy logic rule set �see Table 3�, resulting in
the motion confidence ��x ,y , t�.

We define the membership functions SMALL and BIG
for the difference signal ��x ,y , t� �Eq. �1�� i.e., the mem-
bership �S���x ,y , t�� and �B���x ,y , t��, as follows:

�S���;�,a,b� = �
1 if � � a

1 −
� − a

b − a
if a � � � b

0 if � � b ,
� �6�

�B���;�a,b� = �
0 if � � a

� − a

b − a
if a � � � b

1 if � � b ,
� �7�

which correspond to the plausibility of the statement

“��x ,y , t� is SMALL” and “��x ,y , t� is BIG,” respectively.
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Namely, �S increases for smaller ��x ,y , t� values, while �B

increases for higher ��x ,y , t� values �see Fig. 2�.
The parameters a and b determine the slope

�=1/ �b−a� of the membership functions, as shown in
Fig. 2. Note that in this process, a and b
are allowed to depend on x ,y , t; i.e., we will
evaluate �S�x ,y , t�=�S���x ,y , t� ,a�x,y , t� ,b�x ,y , t�� and
�B�x ,y , t�=�B���x ,y , t� ,a�x ,y , t� ,b�x ,y , t��.

The reason for using a�x ,y , t� and b�x ,y , t� is as follows.
The higher the noise level, the larger the parameters a and
b should be to avoid falsely detecting a significant amount
of motion. Additionally, for a given noise level, we aim to
make our motion detector more sensitive to motion fore-
ground areas and less sensitive to areas that are less likely
to undergo motion �motion background areas�. To deter-
mine the probability of the presence of a motion area we
use the locally averaged interframe difference 
�x ,y , t�
from Eq. �4�. If 
�x ,y , t� is relatively large in comparison to
the noise level, we decide that the current pixel position
belongs to the motion foreground area. In this case, we aim
at increasing the sensitivity of the motion detector and thus
we increase the slope � by reducing the value of parameter
b�x ,y , t�. Otherwise, we assume that the current pixel be-
longs to the motion background area and correspondingly
reduce � by increasing b�x ,y , t� to reduce the sensitiveness
of the motion detector. In such a way, we intend to reduce
the amount of falsely detected motion pixels and simulta-
neously increase the amount of true positives �motion de-
tected pixels�.

To implement the explained idea we define a�x ,y , t� and
b�x ,y , t�, for each pixel position as follows:

a�x,y,t� = ka	�x,y,t − 1� , �8�

and

b�x,y,t� = kb	�x,y,t − 1� + 
�x,y,t� , �9�

where 
�x ,y , t� stands for a correction function defined as


�x,y,t� = kb


	�x, y, t − 1�
1 + 
�x,y,t�

− kf


�x,y,t�

1 + 	�x, y, t − 1�
, �10�

where ka ,kb ,kb
, and kf
 are constants that are experimen-
tally optimized in terms of optimal temporal compensation
�minimum motion blur and highest PSNR� and in terms of
the robustness of motion tracker against noise �minimum
false motion detected pixels�. Namely, ka depends on the

Fig. 3 Example of a 2D neighborhood sliding window for fuzzy mo-
tion detection: B, big; S, small; X, small or big.
resolution and the frame rate of the input video �ka
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� �0,0.25�� and kb=4.2, where in the general case; kb

� f�ka�. However, to avoid dependence of constant ka on
the particular type of sequence, we have fixed ka=0.1 in
our application for all sequences. Additionally, kb
 and kf

denote adjustable constants for the motion background and
motion foreground area, respectively. The default values of
these parameters are kb
=2.5kb=10.5 and kf
=1.15kb
=4.83.

As already mentioned in Sec. 2 at this stage we use the
noise estimate 	�x ,y , t−1� from the previous time iteration
�in Eqs. �8�–�10��, instead of the current noise level esti-
mate �which is not available at the moment�. This poses no
problem, provided that the noise level changes from frame
to frame relatively smoothly, which is most often the case
in practice.

We not only consider the membership �B�x ,y , t� and
�S�x ,y , t� at the current pixel position �x ,y , t� but also at
those of the specific spatial neighbors from the 2-D window
�K�K�, where K=3 in our implementation. We combine
the values of �B�x ,y , t� and �S�x ,y , t� in a 2-D sliding win-
dow, by using the fuzzy rule set, shown in Table 3. Every
rule determines whether there is motion �M�x ,y , t�=true�
or not �M�x ,y , t�=false�, in a fuzzy way.

The first rule in Table 3 states that there is motion
�M�x ,y , t�=true� if the central signal difference ��x ,y , t�,
in the 2-D window �e.g., Fig. 3�, is BIG in a fuzzy way and
at least three neighboring differences ��x+ i ,y+ j , t� �i , j=
−1,0 ,1� are also considered as BIG. The first subfact BF1

of the antecedent of the rule R1, “��x ,y , t� is BIG,” exist of
a variable ��x ,y , t� and a linguistic variable BIG. This fact
is implemented by a membership function BIG, which pro-
duces membership degree �B�x ,y , t�. Note that the mem-
bership degree is a number between 0 �the fact “��x ,y , t� is
BIG” is not true for sure� and 1 �the fact “��x ,y , t� is BIG”
is true for sure�. Hence, the activation degree of R1 is just a
conjunction of the four subfacts, which are combined by a
chosen triangular norm �see Table 1�. Specifically, the in-
tersection �Ù� of all possible combinations of �B�x ,y , t� and
three different neighboring BIG membership �B�x+ i ,y
+ j , t��i , j=−1,0 ,1� are computed, where the algebraic
product �see Table 1� was used as the intersection operator.
The results of these outcomes are summed, using the $
operator, which is the algebraic sum �see Table 2� of all
instances �the local motion for the groups of the temporal
pixel differences�, to obtain the “true” motion confidence
Mtrue�x ,y , t�. In other words, the activation degree of the R1

indicates to which degree M�x ,y , t� can be considered as
true.

Similarly, the second rule states when there is no motion
�M�x ,y , t�=false� as explained in Table 3, where " stands
for the algebraic product of all defined algebraic sums of
the subfacts SF1 , SF2 , SF3, and SF4 �algebraic sum was
used for the union operator Ú�. The second rule in Table 3
represents the complement of the first rule and the output
value of the second rule Mfalse�x ,y , t� corresponds to the
“false” motion confidence.

Finally, we define the motion confidence for each pixel

position �x ,y , t� as follows:
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��x,y,t� =
Mtrue�x,y,t�

Mtrue�x,y,t� + Mfalse�x,y,t�
. �11�

Nevertheless, since the second rule is defined as a
complement of the first rule, we can compute the motion
confidence as ��x ,y , t�=Mtrue�x ,y , t�. Consequently, in such
manner, we reduce the complexity and computation load of
the method, since only the output from the first rule must be
computed.

To summarize, we note that the determined motion con-
fidence � is dependent on both the local noise standard
deviation 	 and the temporal pixel difference �, i.e.,
��x ,y , t�= f�	�x ,y , ti� ,��xi ,yi , t��, where �x ,y , t� and
�xi ,yi , ti� are coordinates of the central pixel position and
the pixel positions from a spatial neighborhood, respec-
tively. Further on, � is also indirectly dependent on the
parameters a , b, and 
, where a�x ,y , t�
= f�	�x ,y , t�� ,b�x ,y , t�= f�	�x ,y , t� ,
�x ,y , t��, and

�x ,y , t�= f���xi ,yi , t��. Consequently, we introduce maxi-
mum two degrees of freedom for all parameters.

4 Parameter Evaluation and Spatial Filtering
In this section, we discuss the computation of the param-
eters ��x ,y , t� and ��x ,y , t� for the recursive temporal fil-
tering and the spatiotemporal adaptive noise level estima-
tion, respectively Sec. 4.1. Additionally, we introduce the
new fuzzy logic spatial filter Sec. 4.2, which is applied on
the temporally filtered sequence, and which aims at filtering
the remaining nonstationary noise.

4.1 Parameter Optimization
Using the degree of motion confidence ��x ,y , t�, we deter-
mine the amount of temporal filtering, described by the
parameter ��x ,y , t�. The idea of the recursive temporal fil-
tering is as follows: when the degree of motion confidence

Table 4 Pixels involved in the calculation of the fuzzy derivatives:
each directions D �column 1� corresponds to a certain set of pixel
positions �middle section� and last column specifies in which direc-
tions derivative pairs are found.

Direction, D Pixel Positions Derivative Pair

N1 C N2

NW �x−1, y+1� �x ,y� �x+1, y−1� �−1,−1�

N �x−1, y� �x ,y� �x+1, y� �0,−1�

NE �x−1, y−1� �x ,y� �x+1, y+1� �1,1�

W �x , y+1� �x ,y� �x , y−1� �−1,0�

E �x , y+1� �x ,y� �x , y−1� �1,0�

SW �x−1, y+1� �x ,y� �x+1, y−1� �1,1�

S �x−1, y� �x ,y� �x+1, y� �0,1�

SE �x−1, y+1� �x ,y� �x+1, y−1� �1,1�
is larger we filter less, while in the opposite case, we filter
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more. Namely, we control the amount of filtering through
the parameter ��x ,y , t�, which is directly proportional to
the estimated motion confidence and takes values of �0,1�.
Note that for one extreme case, ��x ,y , t�=1, there is no
averaging at all, while for the other extreme case,
��x ,y , t�=0, only the processed �filtered� pixel from the
previous temporal position t−1 is substituted. The smaller
the �, the stronger the filtering will be performed but also
the more information from the previous frame will be taken
into account. Thus, in case when ��x , y , t−1� is relatively
large ���x , y , t−1�
1� and ��x ,y , t� relatively small
���x ,y , t�
0�, the amount of filtering will be determined as
��x ,y , t�
0. Hence, the noisy pixel from the previous
frame would be substituted, i.e., the noise will propagate
through the processed sequence.

To refine our method to be robust against noise propa-
gation, we determine ��x ,y , t� not only according to the

motion confidence in the current frame ��̇�x ,y , t��, but also
according to the amount of the temporal filtering in the
previous frame, ��x , y , t−1�. For that, we found one par-
ticular solution, defined as follows:

��x,y,t� =
1

2
�2�x, y, t − 1�

+ �1 −
1

2
��x, y, t − 1�����x,y,t� , �12�

where ���x ,y , t� is an initial estimate based on the motion
confidence ��x ,y , t� only, that is, ���x ,y , t�
=1.15���x ,y , t��1/2 �for ���x ,y , t��1 we assign ���x ,y , t�
=1�. As a result, we obtain a smoother transition of the
amount of temporal filtering from one frame to the other.
Note that by employing Eq. �12�, we both prevent the noise
propagation in time �as already explained� and enable
strong filtering provided by the recursive schemes �e.g., in
case when in two consecutive time instances no motion has
been detected ���x ,y , t�
0 and ��x , y , t−1�
0� as well.
Additionally, in the case when in the previous frame no
filtering was performed ���x , y , t−1�
1� and when no
motion was detected in the current frame ���x ,y , t�=0�, the
determined amount of the filtering will be ��x ,y , t�
0.5,

Table 5 PSNR for processed sequence

Image
Sequence

FRSTF MDAKNN

“Salesman” 33.9 32.5

“Deadline” 34.7 32.2

“Miss America” 36.5 35.3

“Trevor” 34.3 34.1

“Tennis” 31.2 30.5
i.e., simple averaging is done.

Journal of Electronic Imaging 023008-
As defined in Eq. �3� the updated value of 	�x ,y , t� de-
pends on 
�x ,y , t� �defined in Eq. �4�� and the weighting
parameter ��x ,y , t�, which controls the updating �averag-
ing� of 	�x ,y , t�. We found experimentally that the follow-
ing correlation between ��x ,y , t� and the motion confi-
dence ��x ,y , t�:

��x,y,t� = 1.5���x,y,t��1/2, �13�

provides reliable results, where ��x ,y , t�=1 in case of
��x ,y , t��1. As we can observe the parameters ���x ,y , t�
and ��x ,y , t� are defined so as to have the same dependence
on � with the only difference being the constant, i.e.,
���x ,y , t�=1.31��x ,y , t�. With this we intended to reduce
the number of of freedom for the parameters used in the
proposed method. Further on, in our experiments, we dis-
covered that more advantageous performance is obtained in
terms of adaptation to varying noise levels by locally aver-
aging the estimated 	�x ,y , t� value within a 2-D sliding
window �contains half of the values from the previous and
half from the current frame� centered at �x ,y , t�.

4.2 Spatial Filter
The general idea behind the proposed spatial filter is to
filter the nonstationary noise left by the preceding temporal
filter. This is done by a local spatial filtering, which is adap-
tive to image structures and noise level present in the cor-
responding spatial neighborhood. Hence, the aim of the
proposed filter is to distinguish between the local variations
due to noise and the local variations that are due to image
structures. The proposed spatial filter performs weighted
threshold averaging of the temporally processed frame,
where the weighting coefficients are based on fuzzy
derivatives.24 However, instead of defining fuzzy deriva-
tives in terms of negative, positive, big, and small, as de-
scribed in Ref. 24, we evaluate the corresponding direc-
tional derivatives based only on their absolute value, i.e., in
terms of small and big.

Consider a 3�3 neighborhood of a pixel Ip�x ,y , t�. The
derivative �D�x ,y , t� is defined as the absolute difference
between the central pixel �x ,y , t� and its neighbor in the
direction D ; D� �NW,W,SW,S,SE,E,NE,N� �e.g.,

upted with the Gaussian noise 	n=10.

PSNR

med Rational MCWF SEQWT

9.4 30.6 32.9 34.1

4.3 27.3 33.1 X

5.1 35.2 35.9 37.5

3.5 34.3 35.3 X

4.5 26.5 31.3 32.2
s corr

�Trim

2

2

3

3

2

�N�x ,y , t�= �Ip�x , y−1, t�− Ip�x ,y , t���.
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We assume that in case an edgelike image structure ex-
tends in a certain direction D, it causes large derivative
values perpendicular to the direction D at the current pixel
position �x ,y� and at the neighboring pixels as well �e.g.,
for edge-structure in W to E direction,
�N�x ,y , t� , �N�x , y−1, t�, and �N�x , y+1, t� are expected
to be relatively big�. In such a manner, by taking into ac-
count those three derivative values for each direction �and
combining them in a fuzzy logic manner�, we distinguish
between local variations due to noise and due to the edge-
like image structures. In Table 4 we give an overview of the
pixels that are involved in the calculation of the derivatives.

We use the following logic to determine the fuzzy de-
rivative value for a certain direction D and �x ,y , t� coordi-
nate position. If the central derivative �D

C�x ,y , t� is small,
AND either of the two neighboring derivatives, �D

N1�x ,y , t�
for neighbor N1 OR �D

N2�x ,y , t� for neighbor N2 is SMALL,
we conclude that there is small derivative value in direction
D, i.e., the small edge magnitude along the direction per-
pendicular to D. Specifically, we define the D’th-direction
fuzzy derivative value with fuzzy rule 1.

4.2.1 Fuzzy rule 1

IF ���D
C�x,y,t� is SMALL AND �D

N1�x,y,t� is SMALL�

OR ��D
C�x,y,t� is SMALL AND �D

N2�x,y,t� is SMALL��

THEN �D�x,y,t� is SMALL,

where the union �AND� and intersection �OR� operators are
defined using algebraic product and algebraic sum �see
Tables 1 and 2�, respectively. The fuzzy membership func-
tion SMALL, used in fuzzy rule 1, decreases for larger �D,
and is defined as follows:

FS��D�;�,Ts� = �1 −
�D

Ts
if �D � Ts

0 otherwise
� . �14�

The parameter Ts is adapted to the local noise level �Ts

=2.5	�x ,y , t��, and the actual value of the statement
“�D�x ,y , t� is SMALL” is FS��D�x ,y , t� ,Ts�. The choice of

Table 6 PSNR for processed sequence

Image
Sequence

FRSTF MDAKNN

“Salesman” 31.9 29.2

“Deadline” 32.2 28.7

“Miss America” 34.6 30.2

“Trevor” 32.3 29.7

“Tennis” 29.2 28.1
Ts=2.5	�x ,y , t� was experimentally found to be best in
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terms of mean square error for the denoised sequence in
correspondence to the original one.

We define the proposed weighted averaging �spatial� fil-
ter in terms of the determined derivatives �fuzzy rule 1�, for
each of the eight neighbors, as follows:

Iout�x,y,t� =

k=−1

1 
l=−1

1
Ip�xk,yl,t�w�xk,yl,t�


k=−1

1 
l=−1

1
w�xk,yl,t�

, �15�

where xk=x+k and yl=y+ l, and with the weighting coeffi-
cients w defined as the output of the fuzzy controller de-
fined by fuzzy rule 1 for each neighbor, i.e., the weight for
the D’th direction is equal to FS��D�x ,y , t� ,Ts�. The
smaller the derivative �D�x ,y , t� defined by the fuzzy rule
1, the larger will be the weighting coefficients �see Eq.
�14�� and hence the corresponding neighboring pixel values
will be taken more into account for the spatial filtering.

5 Experimental Results
In this section, we demonstrate the performance of the pro-
posed algorithm for video denoising and motion tracking.
The tested �original� video sequences were distorted by
various levels of input Gaussian noise �	n

=5,10,15,20,25�. Additionally, video sequences with un-
steady lighting conditions and noise levels varying in time
throughout the sequence were considered. The camera used
for obtaining the sequences was fixed. This is typical in
applications such as video surveillance, where motion
tracking and video quality improvement are performed.

We first tested several video sequences corrupted with
steady Gaussian noise throughout the input corrupted se-
quences and with steady lighting conditions, such as,
“Salesman,” “Trevor,” “Miss America,” “Bicycle,” “Chair,”
“Tennis,” “Deadline,” “Flower Garden,” and “Miss
America.” We corrupted them with various noise levels—
	n=5,10,15,20,25—and compared the denoising results
with several state of the art techniques.

The proposed fuzzy logic recursive spatiotemporal fil-
tering technique �FRSTF� was compared with several state-
of-the-art techniques for video denoising: The rational
filter25 �rational�, the motion-detail adaptive K-NN filter19

upted with the Gaussian noise 	n=15.

PSNR

med Rational MCWF SEQWT

8.4 29.5 30.8 31.1

3.7 32.9 30.6 X

2.7 26.6 33.6 36.0

1.5 32.1 32.8 X

3.5 26.2 29.3 30.1
s corr

�Trim

2

2

3

3

2

�MDAKNN�, the spatiotemporal sequential filter of Ref. 10
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�SEQWT�, the multiclass wavelet based spatio-temporal
filter11 �MCWF�, the 3-D wavelet filter26 �3DWF�, and the
�-trimmed filter27 �� trimmed�.

In our experiments, we used the following two objective
quality measures for the evaluation of the noise reduction
performance for the proposed temporal and the spatio-
temporal filter �per frame t�: �1� PSNR, determined as fol-
lows:

PSNR�t��dB� = 20 log10
Sp

� 1

MN

x 
y

e�x,y,t��1/2 , �16�

where e�x ,y , t�= �Iout�x ,y , t�− Iorig�x ,y , t��2, with Iout and
Iorig being the corresponding pixel values of the spatiotem-
porally filtered and the original sequence; and �2� PTS-
DNR, which is defined in the following way:

Table 7 PSNR for the temporally filtered sequences corrupted with
the Gaussian noise 	n=10,	n=15, and 	n=20.

Image
Sequence

PSNR

	n=10 	n=15 	n=20

B F B F B F

“Salesman” 31.4 32.4 28.3 29.4 25.4 27.2

“Deadline” 31.7 32.9 28.5 29.6 26.2 27.5

“Miss America” 32.1 32.9 28.9 29.8 26.6 27.7

“Trevor” 30.7 31.3 27.6 28.5 25.4 26.1

“Tennis” 29.8 30.8 26.9 28.2 25.4 26.3

Fig. 4 PSNR per frame f
Journal of Electronic Imaging 023008-
PTSDNR�t��dB� = 20 log10
Sp

� 1

MN

x 
y

eT�x,y,t��1/2 ,

�17�

where eT�x ,y , t�= ��orig
t −�out

t �2, with �orig
t = �Iorig�x ,y , t�

− Iorig�x , y , t−1�� and �out
t = �Iout�x ,y , t�− Iout�x , y , t−1��.

The peak signal value in our case is Sp=255, since we have
8 bits to store a single gray-scale value per each pixel po-
sition in the gray-scale image sequences, hence having
pixel values in the range �0,255�. The parameters M and N
stand for the width and height of the image sequence.

The first measure, PSNR �Eq. �16�� indicates how well
the noise is smoothed and the structures preserved on aver-
age in the spatial domain, in terms of the average correla-
tion of the filtered and the original image sequence, at each
time instant. On the other hand, the novel PTSDNR �Eq.
�17�� measure describes the correlation of the temporal gra-
dients of the filtered and original image sequence, provid-
ing us with the information about noise variation/

Table 8 PTSDNR for the temporally filtered sequences corrupted
with the Gaussian noise 	n=10,	n=15, and 	n=20.

Image
Sequence

PTSDNR

	n=10 	n=15 	n=20

B F B F B F

“Salesman” 32.5 33.2 29.8 31.1 27.7 29.4

“Deadline” 32.5 34.6 29.4 31.6 27.2 29.8

“Miss America” 33.8 35.1 30.6 32.2 28.2 30.5

“Trevor” 30.8 31.6 28.2 29.6 26.1 27.2

“Tennis” 29.5 30.7 27.1 28.7 25.4 27.1

input noise level 	n=15.
or the
Apr–Jun 2006/Vol. 15(2)9
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compensation in the temporal domain �which is usually
very annoying for the human eye and yet not taken into
account by the well known PSNR measure�.

In Tables 5 and 6 we compare the proposed �spatiotem-
poral� filter performance in terms of the averaged PSNR
over all filtered frames in the sequence for the noisy se-
quences with artificial uniformly spread Gaussian noise,
with 	n=10 and 	n=15, respectively. We see that in com-
parison to the single resolution techniques �the rational fil-

Fig. 5 Results for the 30th frame of “Salesma
original, �b� noisy, �c� temporal filter, �d� and spa

Fig. 6 Motion detection comparison �	n=20�: �a� �	n=20� NRCD,
�b� �	n=20� BMD �Tb=2	�x ,y , t��, �c� �	n=20� FMRD �W=0,75�,
and �d� �noise-free� FMRD �W=0.75�.
Journal of Electronic Imaging 023008-1
ter, the MDAKNN filter, and the �-trimmed filter27�, the
proposed FRSTF method performs always significantly bet-
ter �the average improvement is approximately 1.5 dB�,
while it is comparable to multiresolution methods: the SE-
QWT filter and the MCWF. Additionally in Fig. 4, we show
the PSNR per frame for the “Salesman” and the “Trevor”
sequence with additive Gaussian noise �	n=15�, respec-
tively, where the advantageous performance of the pro-
posed method �FRSTF� can also be seen.

To make a comparison between the proposed fuzzy so-
lution and the corresponding binary one, in terms of motion
detection and noise reduction, we define the binary version
of the proposed fuzzy logic motion detection, i.e., we de-
fine the binary motion confidence �b�x ,y , t�, as follows:

�b�x,y,t� =�
1 if ��x,y,t� � Tb�x,y,t� AND

��x + i, y + j,t� � Tb�x,y,t�
for at least three neighbors

i, j � �− 1,0,1�
0 otherwise,

� �18�

where the threshold value Tb�x ,y , t�= �a�x ,y , t�
+b�x ,y , t�� /2 is determined in accordance with the fuzzy
functions defined in Eqs. �6� and �7�. Namely, we say that
for the �x ,y , t� pixel position, the motion in this �binary�
case is present �MD � true� when �b�x ,y , t�=1 and absent

uence corrupted with a noise level 	n=15: �a�
poral filter.
n” seq
�MD � false� when �b�x ,y , t�=0.

Apr–Jun 2006/Vol. 15(2)0
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We demonstrate the performance of the proposed tem-
poral filter that uses fuzzy logic motion detection and cor-
responding fuzzy logic temporal filtering, in comparison to
the binary motion detection version, as defined in Eq. �18�,
where the corresponding temporal filtering is based on av-
eraging or no averaging at all. To show the comparison, we
evaluate the PSNR and PTSDNR of the temporally filtered
noisy image sequence with fuzzy �F� and binary �B� logic.
The corresponding experimental results, in terms of PSNR

Fig. 7 Results for the 124th frame of “Tennis
original, �b� noisy, �c� temporal filter, �d� spatiote

Fig. 8 A
Journal of Electronic Imaging 023008-1
and PTSDNR, averaged in time �through all sequences
frames� are shown in Tables 7 and 8, respectively.

We conclude from the Table 7 that in terms of PSNR of
the temporally filtered image sequences the fuzzy �F� logic
approach provides on average 0.9 dB better results than the
binary �B� approach, where the improvement is approxi-
mately the same for all noise levels. From Table 8 we con-
clude that, in terms of PTSDNR, the fuzzy �F� logic ap-

ence corrupted with a noise level 	n=15: �a�
l filter.

of 	�t�.
” sequ
mpora
daption
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proach provides on average 1.25 dB better results than the
binary �B� approach, where the improvement is smaller for
the lower noise levels �	n=10� 0.7 dB and higher for the
higher noise levels �	n=20� 2 dB.

The temporal only and the spatiotemporal processed se-
quences by the proposed fuzzy logic algorithm, with added
Gaussian noise of 	n=5,10,15,20,25, can be viewed on
http://telin.ugent.be/�vzlokoli/JEI/UNSP/. The video se-
quences illustrating the detected motion �tracking� can also
be viewed there. In these sequences �used only for illustra-
tive purposes� the detected motion was determined by the
motion confidence thresholding �block� in Fig. 1 and de-
scribed by Eq. �2�, with threshold values �=0.5 and �
=0.75. The motion detection sequences illustrate the sensi-
tivity of the motion detector to noise �false detected mo-
tion� and temporal sequence changes �true detected mo-
tion�, while the filtered �temporal and spatio-temporal�
sequences illustrate robustness to motion blur and ability of
efficient noise removal.

In Figs. 5 and 6 we show the denoising results for one
�124th� frame of the “Tennis” sequence and one �30th�
frame of the “Salesman” sequence, corrupted with 	n=15,
respectively. The figures illustrate the performance of the
two steps of the proposed video denoising algorithm, that
are the resulting temporally only filtered frame �left-down
in Figs. 5 and 6� and the spatiotemporally filtered frame
�right-down in Figs. 5 and 6�. Additionally, the up-left and
up-right image in Figs. 5 and 6 stand for the original and
the noisy frame of the image sequence.

In Fig. 7 we compare the proposed motion detector for
the “Tennis” sequence �t=131�,with added noise of 	n

=20, with the noise robust change detection �NRCD� of
Ref. 20 and with the result of the proposed method with the
binary �BMD� logic. The fuzzy �FMRD� logic method per-
formed on the same sequence without noise added was
used in our experiment as a substitution for the groundtruth
concerning motion. From Fig. 7, we can observe that the
proposed FMRD method is always better, that is, more ro-
bust against noise �less false positive motion detected pix-
els� in comparison to the binary �logic approach� motion
detection �BMD�. Moreover, the FMRD method detects
more motion �more true positive motion detected pixels� in
comparison to the NRCD method, by considering the
ground truth motion information from Fig. 7�d�. By com-
paring Figs. 7�b� and 7�c�, we conclude that the fuzzy logic
motion detection �FMRD� performs better than the binary
logic motion detection �BMD�. The fuzzy logic approach
detects the same or more “true” motion pixels while pro-
ducing much less “false” motion detection pixels.

Nevertheless, by changing the threshold value � we can
adapt the algorithm to the desired amount of detection,
whereas in the other methods16,20 the output is fixed. As the
noise increases, number of true detected pixels decreases
very slowly for the cost of efficient reduction of false
�noisy� motion detected pixels. However, even for a rela-
tively small threshold ��� and relatively high noise levels
�	n
20�, the proposed algorithm provides reliable motion
detection results.

We also tested our video denoising algorithm on video
sequences with additive Gaussian noise that changes

throughout the sequence in the temporal domain. As an

Journal of Electronic Imaging 023008-1
experiment, we added noise, 	n=10, in the “Salesman” and
the “Bicycle” sequences, for the first 25 and 15 frames,
respectively, and then changed the noise level to �a� 	n
=15 and �b� 	n=20. Similarly, in another experiment 	n
=20 for the first 25 and 15 frames, for the “Salesman” and
the “Bicycle” sequences, respectively, and then 	n is
changed to �c� 	n=15 and �d� 	n=10. Figure 8 shows how
the estimated average 	�t� value �averaged over 1 frame�
changes from frame to frame and how large the slope is,
i.e., the speed of the temporal adaptation. Specifically, in
Fig. 8�a� the 	 adaptation is illustrated for the “Salesman”
sequence and cases �a� to �d�, while in Fig. 8�b�, the 	
adaptation is illustrated for the “Bicycle” sequence and
cases �a� to �d�. The corresponding processed sequences
can be seen on the Web at http://telin.ugent.be/
�vzlokoli/JEI/NUNSP/CN, where both the denoised se-
quences and the motion detection results are shown. The
value for the motion confidence thresholding �Fig. 1� �Eq.
�2�� was �=0.75. We can observe from the sequences that
the motion detection adapts to the noise level change
gradually and corrects its performance in a few frames
�usually 1 to 4�.

Finally, we tested our algorithm for motion detection
and video denoising on video sequences with varying illu-
mination changes in both the spatial and the temporal do-
mains. For that, we experimented with a fixed camera and
changed the illumination conditions in time and space.
Namely, we performed an experiment in a dark room where
the different lighting conditions were made by varying spa-
tiotemporal changes of an additional light source. Addition-
ally we added Gaussian noise 	n=15 to the sequences and
processed them. The tested sequences consist of a person
coming into the room, moving, and after that leaving the
room. The sequences illustrating the detected motion and
the corresponding denoised sequences can be seen on the
website at http://telin.ugent.be/�vzlokoli/JEI/NUNSP/CI/.
The results demonstrate good robustness against slow illu-
mination changes, while for the sudden changes, we con-
clude that more time is required for the algorithm to adapt.

6 Conclusion
A new adaptive recursive scheme for the fuzzy-logic-based
motion detection and video denoising was proposed. The
proposed fuzzy logic motion detection is robust against
noise and slowly varying illumination changes. The reliable
motion detection scheme enabled efficient temporal recur-
sive filtering, which in turn improved the motion detection
performance in the proposed recursive scheme. In the fu-
ture, we aim to investigate the usage of color and spatial
image features for a more efficient motion detection that
could cope with fast illumination changes and fast zooming
and panning.
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