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Estimating the probability of the presence of a
signal of interest in multiresolution single- and

multiband image denoising
Aleksandra Pižurica, Member, IEEE and Wilfried Philips, Member, IEEE

Abstract— We develop three novel wavelet domain denoising
methods for subband-adaptive, spatially-adaptive and multivalued
image denoising. The core of our approach is the estimation
of the probability that a given coefficient contains a significant
noise-free component, which we call “signal of interest”. In
this respect we analyze cases where the probability of signal
presence is (i) fixed per subband, (ii) conditioned on a local spatial
context and (iii) conditioned on information from multiple image
bands. All the probabilities are estimated assuming a generalized
Laplacian prior for noise-free subband data and additive white
Gaussian noise. The results demonstrate that the new subband-
adaptive shrinkage function outperforms Bayesian thresholding
approaches in terms of mean squared error. The spatially adap-
tive version of the proposed method yields better results than the
existing spatially adaptive ones of similar and higher complexity.
The performance on color and on multispectral images is superior
with respect to recent multiband wavelet thresholding.

Index Terms— Image denoising, wavelets, Bayesian estimation,
generalized likelihood ratio, color and multispectral images.

I. INTRODUCTION

In image denoising, where a trade-off between noise sup-
pression and the preservation of actual image discontinuities
must be made, solutions are sought which can “detect” im-
portant image details and accordingly adapt the degree of
noise smoothing. In the wavelet transform domain [1]–[4],
noise reduction results from shrinking the noisy coefficient
magnitudes: ideally, the wavelet coefficients that contain pri-
marily noise should be reduced to negligible values while the
ones containing a “significant” noise-free component should
be reduced less [5]. A common shrinkage approach is thresh-
olding [5]–[8], where the coefficients with magnitudes below
a certain threshold are treated as “non significant” and are
set to zero, while the remaining, “significant” ones are kept
unmodified (hard-thresholding) or reduced in magnitude (soft-
thresholding).

Shrinkage estimators can also result from a Bayesian ap-
proach [9]–[37], which imposes a prior distribution on noise-
free data. Common priors for noise-free subband data include
(generalized) Laplacian [2], [9], [16], [20], alpha-stable model
[18], [19], double stochastic (Gaussian scale mixture) models
[28]–[30] and mixtures of two distributions [10]–[15] where
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one distribution models the statistics of “significant” coeffi-
cients and the other one models the statistics of “insignificant”
data. Combined with these marginal priors, Hidden Markov
Tree (HMT) [25]–[27] and Markov Random Field (MRF)
[33]–[36] models are often employed to incorporate inter- and
intra-scale dependencies.

Regardless of the particular prior, Bayesian wavelet domain
denoising methods have been developed along the following
two main lines. The first class of methods optimizes the
threshold selection for hard- or soft-thresholding [9]–[12].
The second class of methods derives shrinkage functions by
minimizing a Bayesian risk, typically under a quadratic cost
function (minimum mean squared error - MMSE estimation
[14]–[18]) or under a delta cost function (maximum a poste-
riori - MAP estimation [19], [20]). The above listed methods
are subband adaptive: they are optimized with respect to the
marginal subband statistics. The use of joint and bivariate
statistics of wavelet coefficients is addressed in [21], [22], re-
spectively. In practice, spatially adaptive Bayesian estimators
are effective, where a given parameter of the marginal prior is
refined with respect to the local spatial context [23]–[32].

In this paper we develop three novel Bayesian methods for
subband-adaptive, spatially-adaptive and multivalued image
denoising. The core of our approach is estimating the proba-
bility that a given coefficient contains a significant noise-free
component, which we call “signal of interest”. In this respect
we analyze cases where the involved probabilities are (i) fixed
per subband, (ii) conditioned on a local spatial context and
(iii) conditioned on information from multiple image bands in
case of multivalued images. For actual denoising, we adopt
a simple shrinkage rule that was also used in [33]–[37],
where empirical wavelet coefficients are multiplied with the
probability of containing a significant noise-free component.
The heuristics behind this rule is to define a “softer” and
yet simple alternative to the classical thresholding functions
while satisfying the two main requirements: the shrinkage
factor is always between zero and one and the coefficients
that are more likely to represent the noise are heavier shrunk.
A mathematical motivation for this shrinkage rule in the form
of a posterior expected action can be found in [35]. Here, the
proposed approach for estimating the required probabilities
is essentially different: previous methods were relying on
preliminary coefficient classifications yielding binary masks
that were combined with MRF priors [33]–[36] or used
for empirical density estimation followed by fitting of log-
likelihood ratios [37]. In contrast to this, our new approach
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removes the need for preliminary coefficient classifications
and derives all the required probabilities analytically starting
from the generalized Laplacian marginal prior. Significant
advantages of this new approach are that it does not depend
on any preliminary edge detection (classification) steps, it is
simpler to implement and faster while it yields better results
than the more complex ones based on MRFs. Moreover, we
extend the new method for multiband images as well.

The main novelties and contributions of this paper are: (1)
A novel subband-adaptive shrinkage function, which shrinks
each coefficient according to the probability that it presents
a signal of interest. Experimental results indicate that for
natural images this estimator outperforms, in terms of MSE,
any classical soft-thresholding rule with a uniform threshold
per subband. (2) We develop a spatially adaptive version of
the proposed method. The results demonstrate that the new
method outperforms spatially adaptive thresholding with con-
text modelling as well as MMSE approaches that employ much
more complex HMTs and related methods based on MRFs.
(3) We extend the proposed method for multivalued data.
The results on color and on multispectral images demonstrate
a significant improvement with respect to recent multiband
wavelet thresholding approaches.

The paper is organized as follows. In Section II, we develop
a new subband adaptive shrinkage function for natural images.
In Section III, we extend it first to a spatially adaptive method
and in Section IV to denoising multivalued images. Section V
concludes the paper.

II. SUBBAND ADAPTIVE BAYESIAN WAVELET SHRINKAGE

We assume the input image is contaminated with signal-
independent additive white Gaussian noise of zero mean and
variance σ2. An orthogonal wavelet transformation [1]–[4] of
the noisy input yields an equivalent additive white noise model
in the transform domain. In each wavelet subband at a given
scale and orientation we have

yi = βi + εi, i = 1, ..., n (1)

where βi are noise-free wavelet coefficients, εi are independent
identically distributed (i.i.d.) normal random variables εi ∼
N(0, σ2), which are statistically independent from βi and n
is the number of coefficients in a subband. For compactness,
we suppressed here the indices that denote the scale and the
orientation and we denoted the spatial position with a single
index, like in a raster scanning. In the remainder of this Section
we suppress the spatial index too because the same shrinkage
rule will be applied to all the coefficients in a given subband.

Our approach is aimed for priors that are sharply peaked
at zero and heavy-tailed like Laplacian, generalized Laplacian
and alpha-stable distributions. The generalized Laplacian (also
called generalized Gaussian) prior for the noise-free subband
data [2], [9], [16], [20] is

f(β) =
λν

2Γ( 1
ν
)

exp(−λ|β|ν) (2)

where Γ(x) =
∫

∞

0
tx−1e−tdt is the Gamma function, λ > 0

is the scale parameter and ν is the shape parameter, which

is typically ν ∈ [0, 1] for natural images. The variance
and the kurtosis of the noise-free histogram are [16]: σ2

β =

Γ( 3
ν
)/

(

λ2Γ( 1
ν
)
)

and κβ = Γ( 1
ν
)Γ( 5

ν
)/Γ2( 3

ν
), respectively.

Let us define a “signal of interest” as a noise-free coefficient
component that exceeds a specific threshold T and formulate
the following two hypotheses: H0: “the signal of interest is
absent” and H1: “the signal of interest is present” (in a given
coefficient) precisely as:

H0 : |β| ≤ T and H1 : |β| > T (3)

Let P (H1|y) denote the conditional probability that a wavelet
coefficient contains a signal of interest, given its observed
value. The Bayes’ rule yields P (H1|y) = µη/(1 + µη) where
µ = P (H1)/P (H0) and η = f(y|H1)/f(y|H0) and the
product µη is called the generalized likelihood ratio [38]. We
now consider a simple shrinkage rule

β̂ = P (H1|y)y =
µη

1 + µη
y (4)

that we call ProbShrink hereafter1. Its calculation and the
resulting shape for the assumed prior are illustrated in Fig. 1
that we will now explain in somewhat more detail. Fig. 1(a)
shows an example of the conditional densities of noise-free
coefficients f(β|H0) and f(β|H1). Note that the conditional
density of noise free coefficients given H0 (signal of interest
is absent) is in other words the probability density function
of insignificant noise free coefficients and that it is propor-
tional to f(β) for |β| ≤ T and equal to zero otherwise.
Analogously, the conditional density of β given H1 is the
density of significant noise-free coefficients and is proportional
to f(β) for |β| > T and equal to zero otherwise. For the
assumed additive noise model where the noise coefficients
and the noise-free coefficients are respectively realizations of
two stochastic processes that are statistically independent, the
conditional densities of the noisy coefficients, f(y|H0) and
f(y|H1) result from the following convolutions

f(y|H0) =

∫

∞

−∞

φ(y − β;σ)f(β|H0)dβ

f(y|H1) =

∫

∞

−∞

φ(y − β;σ)f(β|H1)dβ (5)

where φ(y;σ) is the zero mean Gaussian density with the
standard deviation σ. Fig. 1(b) illustrates these conditional
densities of the noisy coefficients. Fig. 1(c) shows the resulting
ProbShrink rule (4), where P (H1) (i.e., the prior ratio µ) is left
as a free parameter. One can see that the smallest coefficients
are heavily shrunk towards zero while the largest ones tend to
remain unchanged. Between these extremes, there is a smooth
transition which depends on the global subband statistics
expressed through P (H1). Next we address the specification
of this parameter in a given subband.

1For the assumed mixture prior, this shrinkage rule can be interpreted as
an approximation of the MMSE estimate E(β|y) = P (H1|y)E(β|y, H1)+
P (H0|y)E(β|y, H0), which follows from simplifying E(β|y, H1) ∼= y and
E(β|y, H0) ∼= 0.
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Fig. 1. (a) An illustration of the probability density functions of noise-free coefficients: f(β) (dotted), f(β|H0) (solid) and f(β|H1) (dashed). (b) The
resulting conditional densities of noisy coefficients f(y|H0) (solid) and f(y|H1) (dashed). (c) ProbShrink rule β̂ = P (H1|y)y, where P (H1) is a parameter.

A. Adapting the prior probabilities to the subband statistics

The first novelty of the proposed subband adaptive shrink-
age method is the way we estimate the prior probability of
signal presence P (H1). In related approaches it has been
usually assumed P (H1) = P (H0) = 0.5 (e.g., [17], [33]–
[36]) or P (H1) was estimated empirically as a given fraction
of the observed noisy coefficients [14], [37]. Here we derive
the probability P (H1) from the prior model for the noise-free
coefficients in a given subband. In particular, we note that for
the hypotheses model (3) the probability of signal presence
amounts to the area under the tails of f(β) for |β| > T and
thus we estimate P (H1) as

P (H1) = 1 −

∫ T

−T

f(β)dβ (6)

Next we develop this expression for the generalized Laplacian
prior and analyze the performance of the resulting ProbShrink
rule (4).

B. ProbShrink rule for the generalized Laplacian prior

Under the assumed prior (2), the conditional densities of
noise-free coefficients are

f(β|H0) =

{

B0 exp(−λ|β|ν), if |β| ≤ T
0, if |β| > T

(7)

and

f(β|H1) =

{

0, if |β| ≤ T
B1 exp(−λ|β|ν), if |β| > T

(8)

with the normalization constants (see Appendix):

B0 =
λν

2Γ( 1
ν
)Γinc

(

(λT )ν , 1
ν

)

B1 =
λν

2Γ( 1
ν
)
[

1 − Γinc

(

(λT )ν , 1
ν

)] (9)

where Γinc(x, a) = 1
Γ(a)

∫ x

0
ta−1e−tdt is the incomplete

gamma function. From (6) we have that (see also Appendix):

P (H1) = 1 − Γinc

(

(λT )ν , 1
ν

)

and thus

µ =
P (H1)

P (H0)
=

1 − Γinc

(

(λT )ν , 1
ν

)

Γinc

(

(λT )ν , 1
ν

) (10)

For the Laplacian prior (ν = 1) the above expression reduces
to µ = P (H1)/P (H0) = exp(−λT )/[1 − exp(−λT )].
Together with the likelihood ratio η = f(y|H1)/f(y|H0),
which is calculated using (5), this completes the specification
of the subband adaptive estimator (4).

C. Estimation of the prior parameters

In the proposed method, the parameters λ and ν of the
generalized Laplacian prior for noise-free data are estimated
from the noisy histogram in each subband, like in [9], [16].
In particular, the variance σ2

y and the fourth moment m4,y of
the generalized Laplacian signal corrupted by additive white
Gaussian noise with standard deviation σ are [16]

σ2
y = σ2+

Γ( 3
ν
)

λ2Γ( 1
ν
)
, m4,y = 3σ4+

6σ2Γ( 3
ν
)

λ2Γ( 1
ν
)

+
Γ( 5

ν
)

λ4Γ( 1
ν
)

(11)

From the above equations, we find

κy =
Γ( 1

ν
)Γ( 5

ν
)

Γ2( 3
ν
)

=
m4,y + 3σ4 − 6σ2σ2

y

(σ2
y − σ2)2

(12)

and

λ =
(

(σ2
y − σ2)

Γ( 1
ν
)

Γ( 3
ν
)

)−
1

2

(13)

The expression Γ( 1
ν
)Γ( 5

ν
)/Γ2( 3

ν
) in the left hand side of

(12) is a monotonic decreasing function of ν. We solve
the parameter ν numerically from this equation. Using the
estimated value of the shape parameter ν, the scale parameter
λ follows directly from (13).

In this paper we use orthogonal wavelets of Daubechies [1].
In particular, all the results in this Section were produced using
a five-level orthogonal transform with the least asymmetrical
wavelet symmlet with eight vanishing moments. In our denois-
ing experiments with artificial noise we assume that the noise
standard deviation σ is known (as it is usually for reporting
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Fig. 2. Resulting PSNR[dB] values for the subband adaptive ProbShrink estimator as a function of the threshold T . From left to right the noise standard
deviation is σ = 10, σ = 15 and σ = 20.

the results in case of artificially added noise). In practice the
noise standard deviation is usually not known in advance, but
its reliable estimate can be obtained as the median absolute
deviation of the coefficients in the highest frequency subband
divided by 0.6745 [6].

D. Experimental performance evaluation

The threshold T that specifies the notion of the signal of
interest is the only parameter of the proposed shrinkage rule
which is not estimated directly from the observed images.
Ideally, we wish to define this threshold such to minimize the
resulting mean squared error. Mathematical derivations seem
untractable for the assumed prior. Therefore, like in [35], [36]
we define the significant signal component based on the oracle
thresholding and we also use the simulations to validate that
this choice indeed optimizes the mean squared error perfor-
mance of our overall method. The ideal oracle thresholding
minimizes MSE by zeroing all the coefficients with the signal
component below σ [4]. In other words, an oracle would tell
us that the noise-free signal component above σ is the signal
of interest, i.e., T = σ. While this choice minimizes the
MSE of an idealized hard-thresholding, we need to verify its
performance for the proposed estimator through simulations.
Our experiments on different natural images confirm that the
resulting PSNR of the proposed estimator peaks in the vicinity
of T = σ (see Fig. 2).

Table I shows the peak signal to noise ratio2 (PSNR)
performance of the proposed ProbShrink rule with T = σ
in comparison to two reference methods: BayesShrink of [9]
and adaptive Bayesian wavelet shrinkage (ABWS) of [14].
BayesShrink is Bayesian soft-thresholding with the threshold
σ2/σβ , which was for natural images (i.e., for the generalized
Laplacian prior) shown to be optimal in terms of mean squared
error. The ABWS method of [14] is a MMSE estimator under

2PSNR is defined as PSNR = 10 log10(2552/MSE), where MSE is the
mean squared error.

TABLE I
PSNR[dB] RESULTS OF THE PROPOSED SUBBAND ADAPTIVE

ProbShrink AND TWO OTHER SUBBAND ADAPTIVE BAYESIAN METHODS

FOR sym8 WAVELET.

Standard deviation of noise
Estimator 10 15 20 25

BARBARA
noisy image 28.12 24.59 22.09 20.17
ABWS [14] 30.71 28.27 26.47 25.10

BayesShrink [9] 31.24 28.86 27.32 26.20
ProbShrink 31.62 29.17 27.54 26.32

BOAT
noisy image 28.15 24.62 22.10 20.17
ABWS [14] 31.01 29.04 27.66 26.68

BayesShrink [9] 32.01 29.98 28.55 27.54
ProbShrink 32.23 30.13 28.70 27.69

COUPLE
noisy image 28.15 24.60 22.11 20.18
ABWS [14] 30.48 28.36 27.15 26.27

BayesShrink [9] 31.70 29.46 28.08 27.09
ProbShrink 31.82 29.60 28.24 27.24

LENA
noisy image 28.13 24.60 22.12 20.16
ABWS [14] 32.84 30.97 29.66 28.74

BayesShrink [9] 33.47 31.53 30.26 29.30
ProbShrink 33.80 31.82 30.49 29.51

a different prior for noise free data, which is a mixture of two
Gaussians. We implemented all the methods in the orthogonal
wavelet representation with five decomposition levels and
using the least asymmetrical wavelet of [1] (often called
“symmlet”) with eight vanishing moments (sym8). For the
ABWS method we used the default choices of the hyperpa-
rameters from [14]. The results demonstrate that ProbShrink
rule outperforms both BayesShrink and ABWS on all tested
images. The improvement with respect to ABWS is on most
images greater than 1dB. This significant difference results
mainly from using different priors: the generalized Laplacian
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Fig. 3. Visual performance of the subband adaptive approach. (a) Boat image. (b) noise-free part (c) noisy part, σ = 10 and denoised versions using (d)
ABWS [14], (e) BayesShrink [9] and (f) the proposed subband adaptive ProbShrink.

that we use models the image wavelet coefficients much better
than the mixture of two Gaussians. Compared to BayesShrink
under the same, generalized Laplacian prior ProbShrink yields
a slight improvement on all images. Since BayesShrink is soft-
thresholding with the MSE optimum threshold, we can deduce
that ProbShrink (at least on the tested images) outperforms soft
thresholding with any threshold that is constant per subband.
We believe that this is an important argument in favor of
the new shrinkage rule, especially because it is of similar
complexity as Bayesian thresholding.

Visual quality of the three estimators from Table I is illus-
trated in Fig. 3. It can be seen that ABWS blurs image details
more than the other two methods. ProbShrink suppresses noise
slightly better than BayesShrink while preserving the image
details equally well.

III. SPATIALLY ADAPTIVE BAYESIAN SHRINKAGE

The shrinkage approach analyzed so far was subband-
adaptive: if two noisy coefficients from the same subband
were of equal magnitudes than they were shrunk by the same
amount no matter their spatial position and no matter their
local surrounding. Now we adapt the estimator to the local
spatial context in the image using a local spatial activity

indicator (LSAI) zl for each spatial position l as follows:

β̂l = P (H1|yl, zl)yl =
ηlξlµ

1 + ηlξlµ
yl (14)

where

ηl =
f(yl|H1)

f(yl|H0)
, ξl =

f(zl|H1)

f(zl|H0)
and µ =

P (H1)

P (H0)
(15)

The characteristic parts of the method are illustrated in Fig. 4,
where the generalized likelihood ratio denotes the product
ηlξlµ. The figure summarizes the whole method: from the
noisy subband, i.e., from the noisy coefficient histogram we
estimate the parameters of the noise-free prior f(β). Using
f(β) we estimate P (H1) (by integrating the tails) and we
find the conditional densities of the noisy coefficients using
(5). The conditional densities of LSAI are calculated using the
conditional densities of the noisy coefficients. Fig. 4 illustrates
also a heuristic explanation of the proposed method: each
coefficient is shrunk according to how probable it is that it
presents useful information, based on its value (via ηl), based
on a measurement from the local surrounding (via ξl) and
based on the global statistical properties of the coefficients in
a given subband (via µ).

Note that even though the general form of the estimator
(14) is the same as in our previous work [37], there is a great
difference between the new, here proposed approach and that
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Fig. 4. (a) An illustration of the proposed denoising method, where pdf
denotes the probability density function and where LSAI denotes the local
spatial activity indicator. (b) The resulting shrinkage rule is a family of
characteristics, which correspond to different values of LSAI.

of [37]. In the first place, the approach of [37] assumes no
particular prior on the noise-free data and no particular noise
distribution. Instead, it uses interscale products for heuristic
preliminary coefficient classification (mask determination) and
involves an empirical density estimation using detected masks
and piece-wise linear fitting of the empirical log-likelihood
ratios. None of these steps is required in the new method: we
do not need any binary masks here, nor empirical density esti-
mation or fitting procedures. All the required probabilities and
probability density functions are now expressed analytically,
starting from the generalized Laplacian prior.

We define LSAI as the locally averaged magnitude of the
coefficients in a relatively small square window δ(l) of a fixed
size N , within the same subband:

zl =
1

N

∑

k∈δ(l)

ωk (16)

where ωl denotes the coefficient magnitude ωl = |yl|. For
practical reasons, we simplify the statistical characterization
of zl considerably assuming that all the coefficients within
the small window are equally distributed and conditionally

independent3 (given H0 or H1). Under these assumptions,
f(Nzl|H0,1) equals N convolutions of f(ωl|H0,1) with itself,
where the densities of coefficient magnitudes are f(ωl|H0,1) =
2f(yl|H0,1) for ωl ≥ 0 and f(ωl|H0,1) = 0 for ωl < 0.

For simplicity of implementation, we experimented with
square windows only. For all the tested images (the sizes
of which were up to 512x512) the window size 3x3 yielded
maximum PSNR. Experimental results in Fig. 5 show that the
resulting spatially adaptive estimator (14) always yields an
improved PSNR as compared to the subband adaptive version
(4). For some images the PSNR gains are up to 0.9dB. Even
though these PSNR gains may seem marginal, the difference
can be seen visually. The visual improvement mainly consists
of better suppressing noise in uniform areas as can be seen
from Fig. 6.

A. Results in the orthogonal wavelet representation

We compared the performance of the proposed method
with several recent denoising methods that use the orthogonal
wavelet transform: spatially adaptive bivariate shrinkage [23],
the locally adaptive Wiener method of [28], the Hidden
Markov Tree (HMT) approach of [25] and a two-dimensional
extension of the block thresholding method from [8]. For the
sake of fair comparison, we implemented all the methods
using the same wavelet decomposition with five decomposition
levels and using symmlet with eight vanishing moments. We
implemented all the reference methods with the parameter
values that yield the best PSNR performance. In particular,
for [23], [28] we used the parameter values that were reported
by the authors to yield the best performance. For the HMT
method [25], we used the publicly available code of the Rice
University. Here we report the results we obtained with the
full HMT training for each image, which yields the best PSNR
performance of this method. In our two-dimensional extension
of the block thresholding of [8] we optimize the constant of
this method to yield the maximum resulting PSNR.4

Fig. 7 shows the results of the five tested methods. The
results demonstrate that the proposed method yields similar
or better results than the existing methods. On all the tested
images the new method outperforms a much more complex
approach based on HMTs.

B. Results in the redundant wavelet representation

The denoising performance of any wavelet shrinkage
method improves by using a redundant instead of the or-
thogonal wavelet representation (see the discussions, e.g.,
in [24], [26], [30], [32]). In this Section, we present the

3Such assumptions were earlier used, e.g., in [28], [31]
4The block thresholding method “NeighBlock” from [8] applies the shrink-

age factor (1 − λσ2/s2)+ where λ is a constant, s2 is the average of the
squared coefficient values within a local window and the window size is
related to the number of the data samples. The authors have considered one-
dimensional signals only for which the optimal value of the parameter was
λ = 4.50524. A direct extension to two dimensions (by relating the window
size to the number of the coefficients in the corresponding direction and by
keeping the constant λ unchanged) results in a poor performance. We achieved
the best performance of this method by setting λ = 1 which is also motivated
by the Proposition 1 from [7].
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Fig. 5. Performance of the proposed ProbShrink method without spatial adaptation (subband adaptive shrinkage) and with spatial adaptation on three test
images: (a) Barbara, (b) Boat and (c) Lena.

Fig. 6. Visual performance of different versions of the proposed ProbShrink method. (a) Noisy Barbara image, σ = 20, PSNR=22.09dB. (b) Subband
adaptive shrinkage in the orthogonal transform, PSNR=27.54dB. (c) Spatially adaptive shrinkage in the orthogonal transform PSNR=28.4dB. (d) Spatially
adaptive shrinkage in the non-decimated transform PSNR=29.53dB.

Fig. 7. Performance of the proposed spatially adaptive shrinkage and several recent methods using orthogonal wavelet transform: [25] (Crouse, 1998), [28]
(Mihçak, 1999), [8] (Cai, 2001) and [23] (Şendur, 2002).

implementation and the performance of the proposed method
in a redundant wavelet representation. In particular, we use
the non-decimated wavelet transform implemented with the

algorithm à trous [4]. We optimized the window size of
our method implemented in the non-decimated wavelet rep-
resentation experimentally. For simplicity, we considered the
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Fig. 8. Results of several recent methods, which use redundant wavelet representation with three orientations: [33] (Malfait, 1997), [24] (Chang, 1998), [26]
(Romberg, 1999), [32] (Li, 2000), [27] (Fan, 2001), [30] (Portilla, 2001) and [36] (Pizurica, 2002). Dashed lines show the best available results, obtained
with 8-orientation steerable pyramid in [31].

Fig. 9. Left: (a) noise-free part of the Peppers image, (b) noisy image, σ = 37.5, (c) the result of the MRF-based method of [36] and (d) the new method.
Right: noise-free part of the Couple image, (b) noisy image, σ = 20, (c) the result of the HMT-based method of [25] and (d) the new method.

square window shape only. For all the tested images with
sizes up to 512x512 the window size 7x7 yielded the max-
imum PSNR. We experimented with two types of orthogonal
wavelets: Daubechies’ wavelets and symmlets [1], [4]. Among
these, symmlet with eight vanishing moments yielded the best
results for most of the tested images. For some images (Lena
and Peppers) slightly better results were obtained using the
Daubechies’ wavelet with two vanishing moments. Table II
lists the resulting PSNR values in comparison with the results
that we obtained using the orthogonal wavelet representation.
The sizes of all images in this table are 512x512, except for
Peppers, which is 256x256. One can see that on different
images the use of the non-decimated representation brings an

improvement in the range of 0.8 to 1.5dB. The visual quality
also improves significantly as it can be seen by comparing
Fig. 6(c) and Fig. 6(d).

In Fig. 8, the results are plotted in comparison with seven
recently published methods, which also use overcomplete
wavelet transforms with three orientations per scale: spatially
adaptive thresholding of [24], locally adaptive Wiener filtering
of [32], MMSE estimation with a Gaussian scale mixture prior
of [30], MMSE estimators with two different HMT models
[26], [27] and two wavelet shrinkage methods based on MRF
priors [33], [36]. Dashed lines in these diagrams show the
best published results so far that were obtained with an 8-
orientation redundant steerable pyramid in [31]. The results
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TABLE II
PSNR[dB] RESULTS OF THE PROPOSED SPATIALLY ADAPTIVE METHOD

(ProbShrink − SP ) USING THE ORTHOGONAL (−ort) AN THE

REDUNDANT (−red) WAVELET REPRESENTATIONS.

Standard deviation of noise
Estimator 10 15 20 25 30

BARBARA
noisy image 28.12 24.59 22.09 20.17 18.57

ProbShrink-SP-ort 32.45 30.02 28.44 27.22 26.26
ProbShrink-SP-red 33.46 31.19 29.53 28.23 27.17

BOAT
noisy image 28.15 24.62 22.10 20.17 18.58

ProbShrink-SP-ort 32.50 30.52 29.14 28.05 27.23
ProbShrink-SP-red 33.25 31.32 29.93 28.89 28.04

COUPLE
noisy image 28.15 24.60 22.11 20.18 18.58

ProbShrink-SP-ort 32.20 30.03 28.63 27.56 26.76
ProbShrink-SP-red 32.94 30.81 29.41 28.38 27.52

LENA
noisy image 28.13 24.60 22.12 20.16 18.60

ProbShrink-SP-ort 34.26 32.36 31.01 30.01 29.16
ProbShrink-SP-red 35.24 33.46 32.20 31.21 30.33

PEPPERS
noisy image 28.10 24.61 22.07 20.19 18.59

ProbShrink-SP-ort 32.69 30.49 28.88 27.62 26.76
ProbShrink-SP-red 33.90 31.81 30.30 29.23 28.35

are plotted for three test images: 512x512 Lena and Barbara
and 256x256 Peppers. The results of the reference methods
were copied from the corresponding publications making sure
that the same versions of the test images are used. The Peppers
is the same as the one in [36], which was also used in [31].
We verified that the standard images Lena and Barbara are
the same as in [30], [31] and there the authors confirm that
the same versions were used in [24], [32]. The comparisons
from [27] indicate that the same image versions are used for
the results of [26], [27] as well.

The results in Fig. 8 demonstrate that in comparison with the
approaches of similar complexity [24], [32], the new method
yields a significant improvement and that it also outperforms
more complex methods that are based on HMT priors [26] and
on MRF priors [33], [36]. Visual improvement is illustrated
in Fig. 9. The new method is for image sizes 512x512
approximately three times as fast as our MRF-based method
from [36].

IV. EXTENSIONS TO MULTIVALUED DATA

The proposed denoising approach leads to efficient low-
complexity noise filters for multivalued data like color images,
multispectral and hyperspectral data or multimodal magnetic
resonance images. In all these cases different image bands are
correlated: an image discontinuity from one band is likely to
occur in at least some of the remaining bands. The simplest
approach to extend our method for multivalued images is to
include the interband correlation in the definition of the local
spatial activity indicator.

Let ωb
l,s denote the noisy coefficient magnitude in the image

band b, wavelet subband s and spatial position l. A possible

TABLE III
PSNR[dB] RESULTS FOR COLOR 512X512 IMAGES USING RGB

REPRESENTATION. ProbShrink − MB DENOTES THE PROPOSED

MULTIBAND DENOISING AND ProbShrink − SP DENOTES

COMPONENTWISE DENOISING USING THE SPATIALLY ADAPTIVE SINGLE

BAND METHOD FROM SECTION III.

Standard deviation of noise
Method 10 15 20 25

BABOON
MBT [39] 28.50 26.78 25.53 24.56

ProbShrink-SP 29.80 27.34 25.79 24.60
ProbShrink-MB 30.17 27.83 26.38 25.27

LENA

MBT [39] 33.84 32.29 31.14 30.15
ProbShrink-SP 34.19 32.46 31.22 30.29

ProbShrink-MB 34.60 33.03 31.92 31.04

PEPPERS

MBT [39] 31.19 30.22 29.45 28.77
ProbShrink-SP 33.20 31.65 30.61 29.75
ProbShrink-MB 33.44 32.05 31.12 30.35

multiband extension of the LSAI from (16) is:

zb
l,s =

1

NB

B
∑

i=1

∑

k∈δ(l)

ωi
k,s (17)

where B is the number of image bands. With this definition
of the LSAI the probability of signal presence is conditioned
on the spatial context as well as on information from other
image bands. Based on experiments with standard color and
with high-resolution multispectral Landsat images, we found
that best results are obtained when the neighborhood δ(l)
is reduced to a single pixel, i.e., when LSAI includes only
the coefficients at the same spatial position from different
image bands: zb

l,s = 1
B

∑B
i=1 ωi

l,s. Its conditional densities
are estimated by convolving the corresponding densities of the
coefficient magnitudes. We take into account a high correlation
between image bands by assuming that the wavelet coefficients
at the same positions in different image bands are distributed
either according to the presence of a signal, i.e., as f(y|H1),
or according to the absence of a signal, i.e., as f(y|H0). For
the sake of tractability we also assume that the coefficients are
conditionally independent given that either H0 or H1 is true.5

Note that in (17) the spectral and the spatial window are
constrained to have the same shape and size. An alternative is
to define the square spatial window and to limit the spectral
window to one pixel from each of the remaining spectral
channels. In our experiments such a definition of LSAI did
not improve PSNR significantly on any of the tested color
and multispectral images and it has even resulted in a slight
performance loss compared to the case when LSAI includes
only the coefficients at the same spatial position from different
image bands. Nevertheless, for some applications it might be

5Note that the conditional independence does not imply that the corre-
sponding coefficients are statistically independent. We take into account the
statistical dependence between these coefficients by imposing that they all
follow either f(y|H1) or f(y|H0) meaning that they all contain either a
large or a small noise-free component.
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Fig. 10. Parts of the noise-free, noisy (σ=25, PSNR=20.17dB) and the denoised (PSNR=30.73dB) color image. Three-band (RGB) representation is used.

Fig. 11. PSNR results on color images in comparison with the method of [39] (Scheunders, 2004) using the RGB (three-band) representation.

Fig. 12. Left to right: parts of the 4th noise-free band of the 7-band Landsat image from [39], noisy image (σ = 35, PSNR = 17.24dB) result of [39]
(PSNR=21.16dB) and the result of the proposed method (PSNR=22.42dB).

interesting to define different spatial and spectral windows
in order to optimally incorporate the spatial and the spectral
information.

A. Experimental results for color images

Let u = [u1...uB ] denote the reference noise-free multi-
band image, where each image band is presented as a one-
dimensional vector u

b = [ub
1...u

b
L] obtained according to

raster scanning. Also, let g = u + n denote the noisy multi-
band image, where n is added white Gaussian noise, and

let û denote the estimated noise-free image (i.e., the image
denoised by wavelet shrinkage). As a quantitative performance
measure we use the peak signal to noise ratio defined as
PSNR = 10log10(255

2/MSE) where the mean squared
error MSE is averaged over all the spectral channels. The input
and the output PSNR are thus calculated respectively as

PSNRinput = 10log10
2552

1
LB

∑L
l=1

∑B
b=1(g

b
l − ub

l )
2
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PSNRres = 10log10
2552

1
LB

∑L
l=1

∑B
b=1(û

b
l − ub

l )
2

For color images, visual results are illustrated in Fig. 10.
The PSNR results for three representative color images are
tabulated in Table III. The reference methods in this Table are
the componentwise denoising using the single-band spatially
adaptive method from Section III and the recent multiband
wavelet thresholding (MBT) of [39]. We implemented all
three methods with the same wavelet transform. The results
show that the proposed multiband denoising improves PSNR
on all the tested images as compared to the componentwise
denoising. The results also demonstrate a superior performance
in comparison with the multiband thresholding of [39]. For the
ease of comparison we also present the PSNR plots of these
two methods in Fig. 11. One can see that on some images our
method achieves an improvement of more than 2dB.

B. Application to multispectral images

We also experimented with multispectral satellite images. In
the satellite systems it may be desirable to perform denoising
before the image compression step in order to improve the
compression efficiency. Also deconvolution of satellite images
is often useful and can be performed as an inverse filtering
operation followed by denoising [40]. There are several noise
sources in optical satellite images (photonic noise, electronic
noise, quantization errors...) and the additive Gaussian noise
model is a realistic approximation [39], [41], [42].

We used Landsat images that consist of seven bands. Fig. 12
shows the results for one band from the Landsat image from
[39]. Our method yields in this case an improvement of 1.3dB
over MBT [39]. The new method achieves an improvement on
all the other bands as well. The gain is different for different
image bands and for different noise standard deviations σ. For
example, for σ = 35 the total gain over MBT summed over all
the bands is approximately 1dB and for σ = 15 this total gain
is around 3.5dB. We also verified that the proposed multiband
ProbShrink better denoises any multispectral band than the
componentwise denoising using the method of Section III. The
total gain of the multiband method with respect to the single-
band version is approximately 2.5dB irrespective of the input
noise level.

The effectiveness of the proposed multiband denoising
method results from adapting the wavelet shrinkage to both
the interband correlations and to the local statistics in each
image band. In other words, the estimated probabilities of
signal presence are different in each image band even though
they are dependant on information from other bands as well
as on the measurements from the given band.

C. Implementation details

Matlab implementations of the proposed method for
greyscale and for color images are available at the web-site
http://telin.UGent.be/ ∼sanja.

V. CONCLUSION

We developed a new wavelet domain denoising method
based on the probability that a given coefficient represents

a significant noise-free component, which we call “signal of
interest”. First we developed a novel subband-adaptive wavelet
shrinkage function. Experiments on natural images yielded
a better MSE performance than Bayesian soft-thresholding
with the MSE-optimum threshold. The proposed spatially
adaptive denoising method yields superior results as compared
to some much more complex recent approaches based on HMT
and MRF models. These results motivate strongly a further
development of the presented concept. Also, improvements
are expected by implementing the proposed method with
a transform of a better orientation selectivity, like complex
wavelets [43], steerable pyramids [31] or curvelets [44].

We also demonstrated that the proposed method can be
easily extended to deal with multivalued images simply by
defining the local spatial activity indicator as a function
of the coefficients from multiple image bands. Our initial
experiments on color and on multispectral Landsat images
already showed a significant improvement over multiband
wavelet thresholding.
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VI. APPENDIX

For the generalized Laplacian prior f(β) from (1), we have
∫ T

−T

f(β)dβ =
λν

2Γ( 1
ν
)

∫ T

−T

exp(−|λβ|ν)dβ

=
λν

Γ( 1
ν
)

∫ T

0

exp(−(λβ)ν)dβ

By introducing the change of variables t = (λβ)ν it follows
that dβ = 1

λν
t

1

ν
−1 dt and thus

∫ T

−T

f(β)dβ =
1

Γ
(

1
ν

)

∫ (λT )ν

0

t
1

ν
−1e−tdt = Γinc

(

(λT )ν ,
1

ν

)

where Γinc(x, a) = 1
Γ(a)

∫ x

0
ta−1e−tdt is the incomplete

gamma function. From (6), we have

µ =
P (H1)

P (H0)
=

1 −
∫ T

−T
f(β)dβ

∫ T

−T
f(β)dβ

=
1 − Γinc

(

(λT )ν , 1
ν

)

Γinc

(

(λT )ν , 1
ν

)

as it was given in (10). For the conditional densities f(β|H0)
and f(β|H1) of noise-free coefficients from (7) and (8), the
normalization constants B0 and B1 are

B0 =
(

∫ T

−T

exp(−|λβ|ν)dβ
)−1

=
(2Γ( 1

ν
)

λν

∫ T

−T

f(β)dβ
)−1

=
λν

2Γ( 1
ν
)Γinc

(

(λT )ν , 1
ν

)
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and

B1 =
(

2

∫

∞

T

exp(−|λβ|ν)dβ
)−1

=
λν

2Γ( 1
ν
)

(

2

∫

∞

T

f(β)dβ
)−1

=
λν

2Γ( 1
ν
)

(

1 −

∫ T

−T

f(β)dβ
)−1 λν

2Γ( 1
ν
)
[

1 − Γinc

(

(λT )ν , 1
ν

)]
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Aleksandra Pižurica was born in Novi Sad, Yu-
goslavia in 1969. In 1994, she received the Diploma
degree in electrical engineering from the University
of Novi Sad (Serbia and Montenegro), in 1997
the M.Sc. diploma in telecommunications from the
University of Belgrade (Serbia and Montenegro)
and in 2002 the Ph.D. degree in applied sciences
from the Ghent University (Belgium). Currently, she
is a postdoctoral researcher at the Department of
Telecommunications and Information Processing of
the Ghent University.

Her research interests include image restoration, multiresolution represen-
tations, Markov Random Field models, signal detection and estimation and
optical communication systems.

Wilfried Philips was born in Aalst, Belgium on
October 19, 1966. In 1989, he received the Diploma
degree in electrical engineering and in 1993 the
Ph.D. degree in applied sciences, both from the
Ghent University, Belgium.

Since November 1997 he is a lecturer at the
Department of Telecommunications and Information
Processing of the Ghent University.

His main research interests are image restoration,
image analysis, and lossless and lossy data compres-
sion of images and video.


