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ABSTRACT

In this paper, we propose a novel global Markov Random Field based

image inpainting method with context-aware label selection. Con-

text is determined based on the texture and color features in fixed

image regions and is used to distinguish areas of similar content to

which the search for candidate patches is limited. Furthermore, we

introduce a novel optimization approach, as an alternative to priority

belief propagation framework, which further reduces the number of

candidates and performs efficient inference to obtain final inpainting

result. Experimental results show improvement over related state-

of-the-art methods. Moreover, global optimization is significantly

accelerated with the proposed inference approach.

Index Terms— inpainting, patch-based algorithms, Markov

Random Fields, texture descriptors, inference methods

1. INTRODUCTION

Image inpainting, or image completion, is an image processing task

of filling in the missing region in an image in a visually plausible

way. In literature, two categories of image inpainting approaches can

be distinguished: diffusion-based [1] and patch-based [2–5]. Patch-

based methods produce better results, especially when inpainting

large missing regions. The missing region is filled in patch-wise

manner with patches from the known region that satisfy certain fit-

ting criterion. Filling order is crucial for the success of the algorithm

because it provides both propagation of textures and object lines and

borders into the missing region.

Patch-based methods can be categorized into “greedy” [2, 6],

non-local [5] and global [4]. The “greedy” ones choose only one

best match at a time, which may be quite limiting and cause visu-

ally inconsistent results, while non-local methods choose multiple

candidate patches and the final patch represents their weighted aver-

age. Finally, global methods define inpainting as a global optimiza-

tion problem. This, in addition to the choice of multiple candidates

(called labels), allows for one label to be chosen eventually for each

position so that the whole set of patches (at all positions) minimizes a

global optimization function. To achieve this in an efficient manner,

priority belief propagation optimization method via priority message

scheduling and label pruning was proposed in [4]. Although label

pruning significantly reduces the number of labels, the method is

still very complex and inefficient for large images. Some solutions

on how to reduce the search in a meaningful way were proposed

in [3], independently of [4].

In this paper, we propose a novel global Markov Random Field

(MRF) based inpainting method where contextual features are used

both to improve the inpainting result and to accelerate the search for

candidate patches. The main novelty is context-aware label selec-

tion, which limits the search for labels to the areas of interest based

on contextual information. We employ Gabor-based texture descrip-

tors similar to those in [7,8] and extend them with color information.

While the related context descriptors were used in other domains like

scene recognition [7] and scene completion using millions of pho-

tographs [8], we do not know of any works where such descriptors

were used for patch-based image inpainting. We demonstrate that

the inpainting process can largely benefit from such a context aware

label search and selection, both in terms of speed and quality.

Another important contribution of this paper is a novel optimiza-

tion approach, which builds upon our recent inference method [9]

to make it suitable for global inpainting problem with large num-

ber of labels. The main advantages of this approach over related

global optimization methods like [4] are improved speed, simplicity

and memory efficiency. Experimental results on different images are

compared to recent global and non-local methods and demonstrate

potentials of the proposed inpainting method.

The paper is organized as follows. Sec. 2 reviews briefly global

patch-based inpainting. The proposed method is explained in Sec. 3

and experiments and results are presented in Sec. 4. The paper is

concluded with Sec. 5.

2. GLOBAL IMAGE INPAINTING

Consider the input image I , with Ω the region to be filled, called the
target region, and Φ the known part of the image, called the source
region. We define Markov Random Field (MRF) G = (ν, ε) over
the target region Ω as a lattice of overlapping w × w patches which
intersect Ω. These patches then represent MRF nodes p ∈ ν whose
labels are all possible patches xp ∈ Λ taken from Φ, while edges ε
make a four neighbourhood system around each central node. Fur-

thermore, data cost Vp(xp) of assigning a label xp to node p is de-
fined as the sum of squared differences (SSD) between the known

pixels at the node and the corresponding label pixels (note that it is

zero if the node is completely inside Ω). Finally, pairwise poten-
tial Vpq(xp, xq), where p and q are neighbouring nodes, is similarly
defined as SSD between labels xp and xq in their region of overlap.
The global inpainting problem can now be formulated as minimizing

the energy

E(x) =
∑

p∈ν

Vp(xp) +
∑

(p,q)∈ε

Vpq(xp, xq). (1)

This type of optimization problems can be solved using loopy

belief propagation (LBP) algorithms [10]. In LBP, the solution

is found by communicating messages between the nodes. The

message in the max-product version of LBP in − log domain,
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is defined as mpq(xq) = minxp∈Λ{Vpq(xp, xq) + Vp(xp) +
∑

r:r  =q,(r,p)∈εmrp(xp)}. The belief bp(xp) = −Vp(xp) −
∑

r:(r,p)∈εmrp(xp) represents a probability of assigning a label
xp to node p and can be interpreted as the confidence of a node
about its labels.

The inpainting method of [4] introduced an improved version

of belief propagation called priority BP (p-BP), to deal more effi-

ciently with problems where each node has a huge number of la-

bels. In particular, a specific priority message scheduling and label

pruning are applied. Priority is assigned to each node as inversely

proportional to the number of labels whose relative belief bp(xp) is
higher than some threshold bconf . This means that the nodes with
more confidence about their labels labels will have higher priority

and therefore, will be visited first (in practice the ones lying on an

object border and having more known pixels). The p-BP contains a

forward and backward pass conducted over multiple iterations. The

forward pass visits previously unvisited nodes in order of highest

priority, pruning their labels, sending messages to their unvisited

neighbours and updating beliefs and priorities of those neighbours.

During the backward pass, nodes are visited in the reverse order and

the rest of messages are sent and beliefs and priorities are updated.

Important part of the algorithm is label pruning whose purpose is to

reduce the number of possible labels for each node to some value

L ∈ [Lmin, Lmax], Lmax # |Λ|, Λ is the set of all possible labels,
by discarding unlikely labels, i.e. the labels whose relative belief

is smaller than some threshold bprune. Note that in practice, label
pruning takes place only in the first forward pass. For details of the

algorithm, see [4].

A problem with [4] is that, prior to label pruning, all possible

labels xp for each node p are considered. This makes the algorithm
very slow because all the message and belief computations are per-

formed for huge number of variables, especially for bigger images.

We will introduce contextual information to further limit the label

set making the algorithm thereby much faster.

3. PROPOSED METHOD

Our proposed method consists of two parts: (1) context-aware label

selection and (2) efficient energy optimization.

3.1. Context-aware label selection

We propose to guide the candidate patch selection (i.e. label se-

lection) by contextual information. The context is characterized by

texture and color descriptors within a fixed block around each node.

Texture descriptors contain a set of low-level image features that de-

scribe the texture in an image or image area. We will use similar

texture descriptors as [7, 8], which are obtained by filtering the im-

age with a bank of multi-scale oriented filters and then averaging the

outputs within square non-overlapping blocks [7]. Such a represen-

tation is called a gist and it gives coarse description of textures in the

image and their spatial organization.

We divide the image intoM×N square non-overlapping blocks

(see Fig. 1) and for each block Bi we compute its texture descriptor
gi as:

gi(n) =
1

#{Bi ∩ Φ}

∑

y∈Bi∩Φ

|I(y)⊗ hn(y)|
2, ∀n ∈ {1, . . . , Nf}.

(2)

⊗ is a convolution operator, #{Bi ∩ Φ} represents the number of
known pixels y in a corresponding block Bi and Nf is the num-

Fig. 1. Top: Division of the image into 5 × 7 non-overlapping
blocks. Block matches of blocks in dashed squares in the top im-

age are shown in squares of matching color. Bottom: Corresponding

contextual descriptors plotted over 21 components and with values

ranging between 0 and 0.04 (see text for details).

ber of filters in a chosen filter bank. We use Gabor filters of six

orientations and across three scales, total of 18 filters. Then gi is
a 18-dimensional vector whose components are ordered by orienta-

tion per each scale, from high to low scales, i.e. high to low spatial

frequencies.

In addition to texture, it is also beneficial to include color as

a feature for contextual description. Therefore, we add three more

components into the feature vector gi which represent the average
color within the block per each HSV color channel:

gi(Nf + n) =
1

#{Bi ∩ Φ}

∑

y∈Bi∩Φ

In(y), ∀n ∈ {1, . . . , C}, (3)

where C = 3 is the number of color channels. The averaged

color values per channel are typically higher than averaged filter

responses. Hence, we normalize the color components by the factor

f , gi(Nf + n) = gi(Nf + n)/f , which is the ratio between max-
imum value of three color components and maximum value of the

averaged filter responses on first Nf components:

f =
maxk∈{Nf+1,Nf+2,Nf+C} gi(k)

maxl∈{1,...,Nf} gi(l)
. (4)

The resulting (Nf + C)-dimensional feature vector gi (Nf + C =
21) shows dominant orientations and scales within the block Bi and
the average color of that block. Fig. 1 illustrates these feature vec-

tors corresponding to different blocks of an image. We can see that

 !"&



Algorithm 1: Algorithm for context-aware label selection

1 for p← 1 to P do // P is the number of nodes

2 find the block Bi to which p belongs
3 compute block reliability ρi
4 if ρi = 1 then

5 e(j) =
∑Nf

n=1(gi(n)−gj(n))
2, ∀j = {1, . . . ,MN}

6 chooseK =MN/r blocks B̂j
i whose gj yieldK

smallest e(j)

7 define new source region Φp = ∪{B̂
1
i , . . . B̂

K
i }

8 else

9 Φp = ∅
10 foreach neighbouring block Bn do

11 repeat steps 4-6 and Φp = ∪{Φp, B̂
1
n, . . . B̂

K
n }

12 end

13 end

14 end

texture features (the first Nf components) are small for nearly flat

blocks (most of the blocks in the first two rows). For the blocks

with dominant edges the peaks appear at positions corresponding to

a particular orientation and tend to increase when the scale increases.

Textured blocks containing snow for example, have smaller descrip-

tor values and smaller peaks at multiple orientations.

Now we can use the feature vectors defined above to find blocks

with similar content and we will limit the label set only to those

blocks. The idea is to constrain the source region for node p ∈ Bi
to Φp ⊂ Φ, as shown in pseudo code in Algorithm 1. The block Bi
itself is always included in this limited source region (e(i) = 0). For
examples of block matches see marked blocks at the top of Fig. 1.

Note that we also introduce binary variable

ρi =

{

1 if#{Bi ∩ Φ} >
#Bi

2
0 otherwise

that represents the reliability of the block because some of the blocks

that intersect the target region can have too little or even no known

pixels based on which context information can be obtained, in which

case we use the neighbouring information.

A couple of implementation details are described next. Note that

a node can span over multiple blocks, in which case comparison is

performed for all the covered blocks, and for each of them K best

matches are found. Also, our contextual descriptors are computed

within non-overlapping blocks, which means that the labels span-

ning over neighbouring blocks are not considered. Therefore, we

take labels from a block extended by w/2.

3.2. Efficient energy minimization

Although we use contextual descriptors to limit the labels to areas of

interest and, therefore, substantially reduce their number (Λp ∈ Φp,
|Λp| ≈ |Λ|/r), we are still dealing with thousands of labels per
MRF node, which is too complex for subsequent optimization. Here

we introduce an efficient inference method, by extending our recent

approach from [9].

We propose to first prune the labels of each node by visiting

them in the order of priority, where both pruning and priority are

determined based on only one term for each label of a node Sp(xp)
that we call similarity. This allows us to define a computationally

tractable MRF and perform simple and fast inference method to ob-

tain the final inpainting result. With such an approach, we avoid

Algorithm 2: Algorithm for efficient energy minimization

1 initialization:

2 for p← 1 to P do

3 compute Sp(xp) = Vp(xp), ∀xp ∈ Λp
4 compute priority Prp = 1/#{xp|Sp(xp) < Tsim}
5 end

6 label pruning:

7 for t← 1 to P do

8 p = unvisited node of highest priority

9 apply label pruning: xp ∈ {x
1
p, . . . x

L
p }, L# |Λp|

10 for any unvisited neighbour q of node p do
11 Sq(xq) = Sq(xq) + Vpq(xp, xq), ∀xq ∈ Λq
12 update priority of node q, Prq
13 end

14 end

15 inference method: x̂ = argminE(x)

computing both messages and beliefs like in p-BP, which is faster,

more memory efficient and allows the application on bigger images.

A pseudo-code of this algorithm is given under Algorithm 2.

We can see that similarity Sp(xp) is initially computed based on
the agreement of node’s labels with the known part of the patch

Vp(xp) and subsequently updated with the neighbouring influence
expressed with pairwise potential Vpq(xp, xq), where both Vp(xp)
and Vpq(xp, xq) are defined in Sec. 2. Based on this similarity

measure, both priorities are computed (as defined in step 4 of Al-

gorithm 2) and label pruning is performed: L labels with highest
similarity are kept as node’s labels, while others are discarded.

At this point, we have a completely defined 4-connected MRF,

where each node p has a set of L possible labels, where L # |Λp|,
and where the potential functions are defined like in Sec. 2. The pro-

posed way of label pruning, although resembling the first forward

pass of p-BP, has the advantage of being simpler and more compu-

tationally efficient. Now we employ our recent inference method

called neighbourhood-consensus message passing (NCMP) [9] to

determine one label per node, where the set of labels x̂ over all nodes

minimizes the energy in 1. This method is simpler and faster than be-

lief propagation and was proved to give good results in other patch-

based MRF models. Finally, chosen patches need to be stitched to-

gether in the region of overlap. As suggested in [4], we use mini-

mum error boundary cut [11] to find the line where two neighbouring

patches match best.

4. EXPERIMENTS AND RESULTS

We tested our method on a number of different natural images. The

parameters of the algorithm are the following: number of labels per

node L = 10, number of iterations of NCMP T = 10, number of
chosen blocks K = MN/r, where r = 6, and Tsim = SSD0/2,
where SSD0 is a predefined median value of SSDs between w × w
patches. Patch size w and number of blocksM×N were varied and

the optimal ones were chosen. Results on some of the images are

shown on Fig. 2. For images from top to bottom, we used the same

patch sizes for all global methods, w = 15, w = 13 and w = 11, re-
spectively, while block divisions for the proposed method are 5× 7,
3 × 4 and 4 × 5, respectively. We can see that simplified global
inpainting introduced in Sec. 3.2 produces similar results as origi-

nal method from [4], while the proposed method with context-aware

label selection gives the best result compared by visual inspection.
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Fig. 2. Inpainting results. From left to right: image with missing region in black, results of [5], results of [4], results of the simplified

optimization approach from Sec. 3.2 without context-aware label selection, results of the complete proposed method.

We also compare the results with state-of-the-art method from [5]

obtained with patch size w = 7, three levels of hierarchy and search
window of 31×31. On the tested images, the proposed method pro-
duces more accurate and more visually pleasing results. Additional

results, including the dependence on block division and patch size,

are available on http://telin.ugent.be/∼truzic/ICIP/.

Table 1. Comparison of computation times for different images.

Image (patch size) Method from [4] Proposed method

“elephant” (w = 13) 1566.8s 331.9s

“baseball” (w = 15) 1152.8s 284.3s

“sydney” (w = 11) 1187s 385.1s

Table 1 shows computation times of the proposed method and

the global method from [4] on images from Fig. 2 using MatLab

implementation on Intel i5-2520M 2.5 GHz CPU with 6GB RAM.

The proposed method is obviously much faster (3 to 4 times) in all

the tested cases, with different image and patch sizes and different

sizes of the missing region.

5. CONCLUSION

In this paper, we introduced a novel MRF based inpainting method

that uses contextual descriptors to reduce the number of possible la-

bels per MRF node. Additionally, labels are better chosen to fit the

surrounding context. We also proposed a simple and efficient way to

perform optimization by first pruning the labels to some small num-

ber and then separately employing the inference method to obtain

final inpainting result. Results demonstrated the benefits of such an

approach in comparison with the state-of-the-art methods, both in

terms of quality and speed.
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