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Abstract—When using morphological features for the classifica-
tion of high resolution hyperspectral images from urban areas, one
should consider two important issues. The first one is that classical
morphological openings and closings degrade the object bound-
aries and deform the object shapes. Morphological openings and
closings by reconstruction can avoid this problem, but this process
leads to some undesirable effects. Objects expected to disappear at
a certain scale remain present when using morphological openings
and closings by reconstruction. The second one is that the mor-
phological profiles (MPs) with different structuring elements and a
range of increasing sizes of morphological operators produce high-
dimensional data. These high-dimensional data may contain re-
dundant information and create a new challenge for conventional
classification methods, especially for the classifiers which are not
robust to the Hughes phenomenon. In this paper, we first investi-
gate morphological profiles with partial reconstruction and direc-
tional MPs for the classification of high resolution hyperspectral
images from urban areas. Secondly, we develop a semi-supervised
feature extraction to reduce the dimensionality of the generated
morphological profiles for the classification. Experimental results
on real urban hyperspectral images demonstrate the efficiency of
the considered techniques.

Index Terms—Classification, high spatial resolution, hyperspec-
tral data, morphological profiles, semi-supervised feature extrac-
tion.

I. INTRODUCTION

R ECENT advances in sensors technology have led to an
increased availability of hyperspectral data from urban

areas at very high both spatial and spectral resolutions. Many
techniques are developed to explore the spatial informationof the
high resolution remote sensing data, in particular, mathematical
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morphology [1], [2] is one of the most popular methods.
Pesaresi andBenediktsson [3]proposed theuseofmorphological
transformations to build amorphological profile (MP).Bellens et
al. [4] further explored this approach by using both disk-shaped
and linear structuring elements to improve the classification of
very high-resolution panchromatic urban imagery.The approach
of [5] extended themethod in [1] for hyperspectral datawith high
spatial resolution. The resulting method built the MPs on the
first principal components (PCs) extracted from a hyperspectral
image, leading to the definition of extended MP (EMP). The
appoach of [6] performs spectral-based morphology using the
full hyperspectral image without dimensionality reduction. In
[7], kernel principal components are used to construct the
EMP, with significant improvement in terms of classification
accuracies compared with the conventional EMP built on PCs.
In [8], the attribute profiles (APs) [9]were applied to thefirst PCs
extracted from a hyperspectral image, generating an extended
AP (EAP). The approach of [10] improved the classification
results by constructing theEAPwith the independent component
analysis.
When using MPs, one should consider two important issues.

The first one is that classical morphological openings and
closings degrade the object boundaries and deform the object
shapes, which may result in losing some crucial informa-
tion and introducing fake objects in the image. To avoid this
problem, one often uses morphological openings and closings
by reconstruction [3], [5], [11]–[13], which can reduce some
shape noise in the image. However, morphological openings
and closings by reconstruction lead to some unexpected results
for remote sensing images, such as over-reconstruction, as
was discussed in [4]. Objects which are expected to disappear
at a certain scale remain present when using morphological
openings and closings by reconstruction. The approach of [4]
proposed a partial reconstruction for the classification of very
high-resolution panchromatic urban imagery. Morphological
openings and closings by partial reconstruction can solve the
problem of over-reconstruction while preserving the shape
of objects as much as possible. They limit the extent of the
reconstruction. The edges of simple objects are reconstruct
well, but a full retrieval of complex elongated shapes might not
be obtained. For simple objects like rectangles for example,
the reconstruction is complete. Since, in urban remote sensing
scenes, most objects are not very complex and even rectangular
shaped, partial reconstruction is very well suited.
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The second problem is that the resulting data sets may
contain redundant information, because the construction of the
generated profiles is based on different structuring elements
(SEs) and a range of increasing sizes of morphological oper-
ators. Furthermore, the increase in the dimensionality of the
generated profiles may create a new challenge for conventional
classification methods, especially for the classifiers which are
not robust to the Hughes phenomenon [14] (for a limited
number of training samples, the classification accuracy de-
creases as the dimension increases). Although some advanced
classifiers, such as neural networks [5], SVM [12], [15] and
random forest classifiers [15], are shown to deal efficiently
with these high dimensional data sets, common statistical clas-
sifiers are often limited in this context. For this reason, feature
extraction (FE), aiming at reducing the dimensionality of data
while keeping as much intrinsic information as possible, is a
desirable preprocessing tool to reduce the dimensionality of
the generated profiles for classification. Relatively few bands
can represent most information of the data, making feature
extraction very useful for classification of remote sensing data
[7], [16]. The effect of different FE methods on reducing
the dimensionality of the generated profiles for classification
of hyperspectral data from urban areas has been discussed
in several studies [5], [12], [15], [17].
However, to the best of our knowledge the use of semi-super-

vised FE methods for the generated morphological profiles has
not been investigated yet. In many real world applications, it is
usually difficult, expensive and time-consuming to collect suf-
ficient amount of labeled samples. Meanwhile, it is much easier
to obtain unlabeled samples. For this reason, semi-supervised
methods [18]–[20], [34]–[36], which aim at improved classi-
fication by utilizing both unlabeled and limited labeled data
gained popularity in the machine learning community.
In this paper, we first investigate the effect of the morpho-

logical profiles with partial reconstruction and the effect of di-
rectional morphological profiles [4] on the classification of hy-
perspectral images from urban areas. Secondly, we develop a
semi-supervised FE method as a preprocessing to reduce the di-
mensionality of the generated morphological profiles for classi-
fication.
The organization of the paper is as follows. Section II

gives a brief review of the morphological profiles with partial
reconstruction and the directional morphological profiles. In
Section III, we present our proposed method which applies
semi-supervised feature extraction to reduce the dimensionality
of the generated morphological profiles for classification. The
experimental results on real urban hyperspectral images are
presented and discussed in Section IV. Finally, the conclusions
of the paper are drawn in Section V.

II. MORPHOLOGICAL FEATURES

Morphological operators act on the values of the pixels ac-
cording to transformations that consider the neighborhood (with
a given size and shape) of the pixels. The basic operators are di-
lation and erosion [1]. These operators are applied to an image
with a set of known shapes, called the structuring elements. In

the case of erosion, a pixel takes the minimum value of all the
pixels in its neighborhood, defined by the SE. By contrast, dila-
tion takes the maximum value of all the pixels in its neighbor-
hood. Dilation and erosion are usually employed in pairs, either
dilation of an image followed by erosion of the dilated result,
or erosion of an image followed by dilation of the eroded re-
sult. These combinations are known as opening and closing. An
opening acts on bright objects compared with their surrounding,
while closings act on dark objects. For example, an opening
deletes (this means the pixels in the object take on the value
of their surrounding) bright objects that are smaller than the SE.
By increasing the size of the SE, more and more objects are re-
moved. We will use the term scale of an opening or closing to
refer to this size. A vector containing the pixel values in open-
ings and closings by reconstruction of different scales is called
the morphologic profile. The MPs carries information about the
size and the shape of objects in the image.
Asidefromdeletingobjectssmaller thantheSE,morphological

openings and closings also deform the objects which are still
present in the image, see Fig. 1(a) and Fig. 2(a), the corners of
rectangular objects in Fig. 1(a) (square object on the top right)
are rounded. To preserve the shapes of objects, morphological
openings and closings by reconstruction are generally the tool
of choice [11], [12]. This process reconstructs the whole object
if at least one pixel of the object survives the opening or
closing. We can see the results in Fig. 1(b) and Fig. 2(b), the
shapes of the objects are well preserved, and some small objects
disappear as the scale (here the scale is related to the size of the
SE) increases. However, an MP with reconstruction will lead
to some undesirable effects (such as over-reconstruction), a lot
of objects that disappeared in the MP without reconstruction
remain present in the MP with reconstruction. Objects which
are expected to disappear in the image at a low scale, are still
present at the highest scales, as shown in Fig. 1(b) (small
bright road on the middle left) and Fig. 2(b) (small black road
on the middle right). The approach of [4] proposed a partial
reconstruction to solve the problem of over-reconstruction
while preserving the shape of objects as much as possible,
and made a great improvement in the classification of very
high-resolution panchromatic urban imagery. In the partial
reconstruction process, a pixel is only reconstructed if it is
connected to a pixel that was not erased, and this second pixel
lies within a certain geodesic distance from the pixel.
The geodesic distance between two pixels is the length of
the shortest path between the two pixels that lie completely
within the object. The parameter sets the amount of
reconstruction. For disk shaped SE, this amount can be chosen
such that rectangular objects are completely reconstructed.
For linear SE, the choose of a good value is more difficult.
However, 10% of the lenght of the SE seems a good value
[4]. Fig. 1(c) and Fig. 2(c) show the results of MP with partial
reconstruction in different scales. The shapes of objects are
better preserved with partial reconstruction compared to the
MP without reconstruction. Some of the more complex shapes
are not so well preserved as with geodesic reconstruction. On
the other hand, a lot of small objects which remain present
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Fig. 1. Openings with disk-shaped SEs of increasing size. The scales of SEs vary from 2 to 8, with step 2. The image processed is part of the
first PC extracted from University Area data set in Fig. 3(a). (a) Without reconstruction; (b) geodesic reconstruction; (c) partial reconstruction.

in the MP with reconstruction, now disappear in the case
with partial reconstruction. Basically this is because in remote
sensing (urban) scenes different objects lie closely together
and because of noise and other effects, different objects are
often connected by a sequence of pixels with similar (or more
extreme) pixel values. Therefore, reconstruction considers all
those connected objects as a single object and objects will
only disappear when the SE does not fit the broadest (for
disk shapes) or longest (for directional) part of the connected
object, even though this part might be far away from the actual
object. Partial reconstruction only reconstructs the immediate
surrounding of the surveiving part.
Because of its isotropic character morphological openings

and closings with disk-shaped SEs are themost popular methods
used in current literature [5], [12], [15]. Objects where the SE
does not fit are deleted from the image. For disk shaped SE this
means objects where the smallest objects size (i.e. the width)
is smaller than the diameter of the disk. Closings and open-
ings with disk-shaped SEs thus act on the minimum size of
objects. This results in an disk-based MP carrying information
about the minimum size of objects. Fig. 1(c) shows the result
of the opening transform with partial reconstruction for dif-
ferent-sized, disk-shaped SEs. As the size of the SE increases,

more and more bright objects disappear in the dark background.
The size of the SE that makes objects disappear corresponds to
the minimum size of the object. In [4], directional MP was pro-
posed to obtain an indication of the maximum size of objects.
With a linear structuring element of length and orientation ,
an opening (resp. closing) deletes bright (resp. dark) objects (or
object parts) which are smaller than that length in that direction.
When performing such openings (or closings) with different ori-
entations, objects which are shorter than will be completely
removed in all of these images. The maximum (resp. minimum)
over all of these openings (resp. closings) will therefore remove
the short objects (or object parts) and keep the long objects. Cre-
ating multiple such maximum or minimum images for different
lengths gives you the directional MP. Thus the directional MP
carries information about the maximum size of objects. This in-
formation can be used for detecting linear objects (roads), since
these objects have large maximum sizes and small minimum
sizes. Fig. 2(c) shows an example of the directional MP with
partial reconstruction. Note that individual houses disappear at
lower scales, while roads and apartment buildings with a more
elongated shape have almost constant intensities. For more de-
tails on MP with partial reconstruction and directional MP, the
readers should consult [4]. This paper investigates MP with par-
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tial reconstruction and directional MP of [4] for the classifica-
tion of high resolution hyperspectral images from urban areas.
The morphologic profiles with a certain SE produce a vector

of values, each value corresponding with the feature output for
a specific scale. While morphologic profiles with different SEs
will then be a high-dimensional stacked vector. The resulting
high-dimensional data may contain redundant information. Fur-
thermore, if we use these high-dimensional data as an input fea-
ture for classification, this may create a challenge for conven-
tional classification methods. Therefore, we will use feature ex-
traction as a preprocessing to reduce the dimensionality of the
generated morphological profiles before classification.

III. PROPOSED SEMI-SUPERVISED FEATURE EXTRACTION FOR
MORPHOLOGICAL PROFILES

A number of approaches exist for feature extraction of the
generated morphological profiles [5], [12], [15], [17], ranging
from unsupervised methods to supervised ones. One of the best
known unsupervised methods is Principle Component Analysis
(PCA) [28], which is widely used [5], [12], [13]. Green et al.
[29] introduced the minimum noise fraction (MNF) transforma-
tion. Recently, some local methods, which preserve the proper-
ties of local neighborhoods were used to reduce the dimension-
ality of hyperspectral images [30]–[32], such as Locally Linear
Embedding [31], Neighborhood Preserving Embedding (NPE)
[33]. By considering neighborhood information around the data,
these local methods can preserve local neighborhood informa-
tion and detect the manifold embedded in the high-dimensional
feature space.
Supervised methods rely on the existence of labeled sam-

ples to infer class separability. Two widely used supervised fea-
ture extraction methods are the Fisher Linear discriminant anal-
ysis (LDA) [22] and nonparametric weighted feature extraction
(NWFE) [23]. Many extensions to these two methods have been
proposed in recent years, such as modified Fisher’s linear dis-
criminant analysis [24], regularized linear discriminant analysis
[25], modified nonparametric weight feature extraction using
spatial and spectral information [26], and kernel nonparametric
weighted feature extraction [27].
However, to the best of our knowledge, the use of semi-su-

pervised FE methods for the generated morphological profiles
has not been investigated yet. In real-world applications, labeled
samples are usually very limited, while unlabeled ones are avail-
able in large quantities at very low cost. Recently, some semi-su-
pervised feature extraction methods were proposed to reduce
the dimension of hyperspectral data sets. The approach of [20]
proposed a general semi-supervised dimensionality reduction
framework based on pairwise constraints, which employs regu-
larization with sparse representation. In an earlier work [21], we
proposed a semi-supervised local discriminant analysis (SELD)
method, which combines LDA and NPE, to extract features
from the original hyperspectral data. In this paper, we propose
a generalized SELD (GSELD) to extract features from the gen-
erated morphological profiles.

Let , denote high-dimensional data,
, and the low-dimensional representations

of the high-dimensional data . In our application,
is the dimensionality of the generated profiles, and is the
dimensionality of the extracted features. The goal of linear
feature extraction is to find a projection matrix , which
can map every high-dimensional data to such
that most information of the high-dimensional data is kept in a
much lower dimensional feature space.

A. Background of Some Related Methods

1) Linear Discriminant Analysis (LDA): As a supervised
method, LDA seeks directions on which the ratio of the
between-class covariance to within-class covariance is maxi-
mized. The objective function of LDA is as follows:

(1)

(2)

(3)

where is the number of samples in the th class, is the
mean of the entire training samples, is the mean of the th
class, is the th sample in the th class, is the number of
classes. is called the between-class scatter matrix and the
within-classes scatter matrix.
2) Neighborhood Preserving Embedding (NPE): NPE [33]

seeks a projection direction on which neighborhood data points
in the high-dimensional feature space are kept neighborhood
in the low-dimensional feature space as well. NPE first finds
nearest neighbors for each data point ; then calculates
the reconstruction weights by minimizing the reconstruc-
tion error, which results from approximating by its nearest
neighbors:

(4)

The extracted features in the low-dimensional projected
subspace that best preserve the local neighborhood information
are then obtained as:

(5)

The objective function of NPE is as follows:

(6)
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Fig. 2. Closings with linear SEs of increasing size. The scales of SEs vary from 20 to 80, with step 20. The image processed is part of the
first PC extracted from Pavia Centre data set in Fig. 4(a). (a) Without reconstruction; (b) geodesic reconstruction; (c) partial reconstruction.

where is the training set, , represents
the identity matrix and is the reconstruction weights matrix
[33]. The solution to (1) and (6) is equivalent to solving the
following generalized eigenvalue problem:

(7)

For LDA method, the and . For NPE
method, and . The projection ma-
trix is made up by the eigenvectors
of the matrix associated with the largest eigenvalues

.

B. The Proposed Method

Focusing on class discrimination, LDA is in general well
suited to preprocessing for the task of classification, since the
transformation improves class separation. However, when only
a small number of labeled samples are available, LDA tends to

perform poorly due to overfitting. Moreover, as the rank of the
between-class scatter matrix is , the LDA can extract at
most features, which is not always sufficient to represent
essential information of the original data. NPE works directly
on the data without any ground truth, and incorporates the local
neighborhood information of data points in its feature extraction
process. In our earlier work [21], we combined LDA and NPE
in a new framework, and proposed a semi-supervised local dis-
criminant analysis (SELD) method to extract features from the
original hyperspectral data. SELD magnified the advantages of
LDA and NPE, and compensated for disadvantages of the two
at the same time. In this paper, we propose a new semi-super-
vised method to extract features from the generated morpho-
logical profiles. The proposed method extends SELD [21] with
a tunable parameter and we abbreviate this generalized SELD
method as GSELD.
Suppose a training data set is made up of the labeled set

, , is the number
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of classes, and unlabeled set . The
th class has samples with . Without loss
of generality, we center the data points by subtracting the
mean vector from all the sample vectors, and assume that
the labeled samples in are
ordered according to their labels, with data matrix of the
th class where is the
th sample in the th class. Then the labeled set can be ex-
pressed as , all training set

. The optimization problem of the
proposed GSELD is:

(8)

where the matrices and are from the reformulation of
LDA part, and the matrices and are from the reformulation
of NPE part, for more details, the readers should consult [21].
is the tunable parameter. When is set to zero, (8) reduces

to (6). When the parameter is set to 1, the proposed method
reduces to SELD [21]. Let and

, we can solve the generalized
eigenvalue problem of GSELD as (7), and get the projection
matrix .
The algorithmic procedure of the proposed method which

uses GSELD to extract features from the generated MPs is for-
mally stated below:

1) Use PCA to extract the most significant principal
components (usually with cumulative variance near to
99%) from the original hyperspectral data sets.

2) Build the MPs on the extracted PCs. Actually, the MP
are defined the same way as [4], [5]. An MP consist
of the original image (one of the PC features) and
openings with SE of increasing size (all applied on the
original image) and closings with the same SE. Then,
an Extended Morphological Profile (EMP) is obtained
with dimension.

3) Divide the training samples into two subsets. Suppose
that the labeled samples in are
ordered according to their labels, with data matrix of
the th class where is the
th sample in the th class, then the labeled set can be
expressed as . The
unlabeled set is denoted as .

4) Construct the matrices and from the labeled samples,
and construct the matrix and from the unlabeled
samples.

5) Compute the eigenvectors and eigenvalues for the
generalized eigenvector problem in (6). The projection
matrix is made up by the
eigenvectors of the matrix associated
with the largest eigenvalues .

6) Project the high dimensional generated morphological
profiles into a lower dimensional subspace

by

7) Use these extracted features in the lower dimensional
subspace as an input to do classification.

IV. EXPERIMENTAL RESULTS

A. Hyperspectral Image Data Sets

Experiments were run on three data sets, namely the ‘Pavia
Center’, ‘University Area’ and ‘Indian Pine’.The first two
data sets are from urban areas in the city of Pavia, Italy.The
data were collected by the ROSIS (Reflective Optics System
Imaging Spectrometer) sensor, with 115 spectral bands in the
wavelength range from 0.43 to 0.86 and very fine spatial
resolution of 1.3 meters by pixel.
Pavia Center: The data with 1096 492 pixels was collected

overPaviacitycenter, Italy. Itcontains102spectralchannelsafter
removal of noisy bands (seeFig. 3(a) for a color composite).Nine
groundtruth classes were considered in experiments, see Table I.
Note that the color in the cell denotes different classes in the clas-
sificationmaps (Fig. 3 and Fig. 4).University Area: The datawith
610 340pixelswascollectedover theUniversityofPavia, Italy.
Itcontains103spectralchannelsafter removalofnoisybands(see
Fig. 4(a) for a color composite). The data also includes 9 land
cover/use classes, see Table I.
Indian Pine: The data set was captured by Airborne Vis-

ible/Infrared Imaging Spectrometer (AVIRIS) over north-
western Indiana in June 1992, with 220 spectral bands in the
wavelength range from 0.4 to 2.5 and low spatial resolu-
tion of 20 meters by pixel. The calibrated data are available
online (along with detailed ground-truth information) from
http://cobweb.ecn.purdue.edu/~biehl/. The whole scene, con-
sisting of the full 145 145 pixels, which contains 16 classes,
ranging in size from 20 to 2468 pixels. 9 classes were selected
for the experiments, 70% of labeled samples are randomly
selected as training set, the rest 30% of the labeled samples are
assigned to the test set.

B. Experimental Setup

To apply the morphological profiles with partial reconstruc-
tion and directional morphological profiles of [4] from panchro-
matic imagery to hyperspectral images, principal component
analysis (PCA) was first applied to the original hyperspectral
data set, and the first 3 principal components (PCs) were se-
lected (representing 99% of the cumulative variance) to con-
struct the MPs. For disk-shaped structuring elements, morpho-
logical profiles with 15 openings and closings (ranging from 1
to 15 with step size increment of 1) were then computed for each
PC. For linear structuring elements, morphological profiles with
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Fig. 3. Classification maps for Pavia Center with best classification accuracy over ten runs, 20 training samples per class with SVM classifier were used. (a) False
color image, and thematic map using (b) Spectral Only, (c) Disk-based MP without reconstruction, (d) Disk-based MP with reconstruction, (e) Disk-based MP with
partial reconstruction, (f) Disk- and linear-based MP without reconstruction, (g) Disk- and linear-based MP with reconstruction, and (h) Disk- and linear-based
MP with partial reconstruction.

TABLE I
TRAINING AND TEST SAMPLES FOR DATA SETS USED IN THE EXPERIMENTS

only 15 closings (ranging from 10 to 150 with step size incre-
ment of 10) were constructed for each PC, since objects like
roads in the extracted PCs proved to be mostly dark compared
to the background, we only made use of closing transforms. As a
result, each disk-based profile was made up of 31 bands and the
final disk-based MPs, constructed using three principal compo-
nents, consisted of 93 bands. The final MPs based on both disk
and linear SEs were 138 bands.

We used three common classifiers: 1-nearest neighbor (1
NN), linear discriminant classifier (LDC) [37], and support
vector machines (SVM) [38]. The SVM classifier with ra-
dial basis function (RBF) kernels in Matlab SVM Toolbox,
LIBSVM [39], is applied in our experiments. SVM with RBF
kernels has two parameters: the penalty factor and the RBF
kernel width . We apply a grid-search on and using
5-fold cross-validation to find the best within the given set
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Fig. 4. Classification maps for University Area with best classification accuracy over ten runs, 20 training samples per class with SVM classifier were used. (a)
False color image, and thematic maps using (b) Spectral Only, (c) Disk-based MP without reconstruction, (d) Disk-based MP with reconstruction, (e) Disk-based
MP with partial reconstruction, (f) Disk- and linear-based MP without reconstruction, (g) Disk- and linear-based MP with reconstruction, and (h) Disk- and linear-
based MP with partial reconstruction.

TABLE II
OVERALL ACCURACY IN A CLASSIFICATION WITH SPECTRAL ONLY COMPARED TO CLASSIFICATIONS WITH DISK-BASED MPS WITHOUT RECONSTRUCTION, WITH

RECONSTRUCTION, AND WITH PARTIAL RECONSTRUCTION

and the best within the given set
.

In order to investigate the influences of the training samples
size in more detail, the training data sets were then randomly
subsampled to create samples whose sizes corresponded to five
distinct cases: 10, 20, 40, 80 and 160 samples per class, respec-
tively. All classifiers were evaluated against the testing sets, the
results were averaged over five runs. The word ‘Reconstruction’
in the tables is shortened as ‘Re.’.

C. Results Using Morphological Profiles With Partial
Reconstruction and Directional MPs

We compared the MPs with reconstruction, without recon-
struction, and with partial reconstruction in both two data sets.
We also compared the results with the directional MPs. Since
Gaussian Classifier LDC is not efficient to deal with high-di-
mensional data, we use 1 NN and SVM classifiers in this exper-
iment. The resulting accuracies are shown in Table II, Table III.
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TABLE III
OVERALL ACCURACY COMPARISON IN A CLASSIFICATION AMONG DISK-& LINEAR-BASED MPS WITHOUT RECONSTRUCTION, WITH RECONSTRUCTION, AND

WITH PARTIAL RECONSTRUCTION

TABLE IV
PAVIA CENTER: BEST CLASSIFICATION ACCURACY (%) OVER TEN RUNS FOR CLASSIFICATION MAPS IN FIG. 3, 20 TRAINING SAMPLES PER CLASS WERE USED

The best overall accuracy (OA) of each data set in each training
sample size is highlighted (in column) in bold font.
From these tables, we have the following findings:
1) The results confirm that the MPs (without reconstruction,
with reconstruction, and with partial reconstruction) can
improve the classification performance on hyperspectral
images. By building the extended morphological profiles
on the first 3 principal components, the results can be im-
proved a lot. Compared to the situation with only spectral
bands in each training sample size, the OA of Pavia Center
and University Area data sets with MPs have 0.2%–2.6%
and 12.4%–20% improvements for the 1 NN classifier, re-
spectively. For SVM classifier, these improvements are
2%–3.3% and 1.5%–25.5%, respectively.

2) As the number of training samples increases, the OA will
increase. Especially for SVM classifier, in Pavia Center
data set, the OA of spectral only has 2% improvements
from 10 training samples per class to 160 training samples,
this also happens onMPs with nearly 2% improvements; in
University Area data set, the OA of spectral only increases
from 65.3% to 78.7%when the number of training samples
per class changes from 10 to 160, while MPs with almost
7% improvements.

3) The results can be improved by adding the directionalMPs.
There is a substantial improvement of the overall accuracy
over the classificationwith only disk-basedMPs. However,
when using MPs with reconstruction, the classification ac-
curacies by adding the directional MPs improves very little
and is comparatively much less than those without recon-
struction and with partial reconstruction. This is because

the disk-based MPs and linear-based MPs with reconstruc-
tion contain much the same information.

4) It is better not to use MPs with reconstruction in some
cases. This is in particular the case in University Area data
set, where theMPswith reconstruction perform evenworse
than MPs without reconstruction. The MPs with partial re-
construction and SVM classifier almost gets the best results
all the time, this is obvious in University Area data set.

In order to compare the classification results visually, we ran-
domly select 20 training samples per class for training, and
use all the samples for testing. The SVM classifier was used.
The best results over ten runs are shown in Fig. 3, Fig. 4 and
Table IV, Table V. The Z tests [40] were reported Table VI,
Table VII.
1) The MPs (without reconstruction, with reconstruction, and
with partial reconstruction) can preserve well spatial infor-
mation on hyperspectral images. The classification maps
with MPs produce much smoother homogeneous regions
than that of spectral only, which is particularly significant
when using MPs with no reconstruction and with partial
reconstruction, see Table VI, Table VII. The statistical dif-
ference of accuracy clearly demonstrates the
benefit of using the MPs with no reconstruction and with
partial reconstruction rather than the spectral only.

2) The classification maps using the MPs with reconstruction
look much noisier because of the over reconstruction prob-
lems. The MPs with no reconstruction deform the objects,
see Fig. 4(c) and Fig. 4(f), the borders of some objects
are deformed. While small objects might be fused together
(e.g., the buildings and shadows in the bottom part of the
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TABLE V
UNIVERSITY AREA: BEST CLASSIFICATION ACCURACY (%) OVER TEN RUNS FOR CLASSIFICATION MAPS IN FIG. 4, 20 TRAINING SAMPLES PER CLASS WERE USED

TABLE VI
UNIVERSITY AREA: STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION (Z) OVER TEN RUNS. EACH CASE OF THE TABLE REPRESENTS WHERE

R IS THE ROW AND C IS THE COLUMN, 20 TRAINING SAMPLES PER CLASS WITH SVM CLASSIFIER WERE USED

TABLE VII
PAVIA CENTER: STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION (Z) OVER TEN RUNS. EACH CASE OF THE TABLE REPRESENTS WHERE R IS

THE ROW AND C IS THE COLUMN, 20 TRAINING SAMPLES PER CLASS WITH SVM CLASSIFIER WERE USED

Pavia center image) when using the MPs with partial re-
construction and no reconstruction, in this case, the MPs
with full reconstruction perform better.

3) When using both disk-based and directional MPs with par-
tial reconstruction, we get the best OA, AA and for
both data sets, and relative lower standard deviation (std).
For University Area data set, the difference is statistically
significant. For Pavia Center data set, the difference is not
statistically significant with .

D. Results Using Semi-Supervised Feature Extraction to
Reduce the Dimensionality of the Generated MPs

We compare the resulting classification accuracies using
the proposed GSELD method to extract features from the
generated morphological profiles with those resulting from the
following methods: PCA [28]; LDA [22]; NPE [33]; NWFE
[23]. The data sets of University Area and Indian Pine are
used. For Indian Pine data set, we compared the results with
partial reconstruction based on only disk-based MPs. In our
experiments, unlabeled samples are randomly selected
for training the proposed GSELD, the parameter in (8) is

set as ( is the number of labeled training samples),
which can change automatically according to the ratio of the
number of unlabeled and labeled samples while increasing
the class separability. 20 features (except only for the
features in LDA) are extracted, then, the testing accuracies of
each employed number of features are calculated respectively.
The highest OA with three classifiers in different samples
size are shown in Fig. 5–Fig. 7, the number of extracted
features changed from 1 to 20, each experiment was repeated
5 times, the average was acquired.
1) The results confirm that feature extraction can improve the
classification performance. Especially for conventional
classifiers (such as LDC classifier), FE makes the clas-
sification possible. For 1 NN classifier, the results of
University Area dat set can be improved a lot by using
FE as a preprocessing.

2) SVM classifier is more efficient to deal with the high
dimensional data, this is obvious in University Area data
set, see Fig. 5(c) and Fig. 7(c). In some cases, it can
achieve even better performances than those using FE
as a preprocessing, see Fig. 5(c). When using only the
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Fig. 5. Highest OA of University Area in different samples size with partial reconstruction based on only disk-based MPs, the number of extracted
features changed from 1 to 20, each experiment was repeated 5 times, the average was acquired. (a) LDC classifier; (b) 1 NN classifier; (c) SVM classifier.

Fig. 6. Highest OA of Indian Pine in different samples size with partial reconstruction based on only disk-based MPs, the number of extracted features
changed from 1 to 20, each experiment was repeated 5 times, the average was acquired. (a) LDC classifier; (b) 1 NN classifier; (c) SVM classifier.

Fig. 7. Highest OA of University Area in different samples size with partial reconstruction based on both disk-based and linear-based MPs, the
number of extracted features changed from 1 to 20, each experiment was repeated 5 times, the average was acquired. (a) LDC classifier; 1 NN
classifier; (c) SVM classifier.

disk-based MPs, SVM classifier with no FE outperforms
those with FE as a preprocessing.

3) For the LDC and the SVM classifiers, as the number
of training samples per class increases, the OA of each
method will increase. This is particular for the supervised
LDA method, when the number of training samples per
class is 10, the OA is much lower than 60%. When the
number of training samples per class is more than 80,
the OA of LDA increases above 80%.

4) For low resolution Indian Pine data set, when the training
sample size increases, the proposed GSELD with LDC
classifier outperforms the other methods with LDC clas-
sifier. While NWFE with KNN classifier performs a little
bit better than GSELD with KNN classifier. When using
SVM classifier, the OA of GSELD is similar with that
of NWFE.

5) For high resolution urban data set (University Area), when
using both the disk-based and linear-based morphological
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Fig. 8. Performance of each feature extraction method using 20 training samples per class for University Area data set, the MPs are based on only disk SE with
Partial Reconstruction. Each experiment was repeated 5 times, the average was acquired. (a) LDC classifier; (b) 1 NN classifier; (c) SVM classifier.

Fig. 9. Performance of each feature extraction method using 20 training samples per class for University Area data set, the MPs are based on both disk and linear
SEs with Partial Reconstruction. Each experiment was repeated 5 times, the average was acquired. (a) LDC classifier; (b) 1 NN classifier; (c) SVM classifier.

features, the proposed GSELD gets the highest OA in
different samples size. The highest OA for training samples
size with 10, 20, 40, 80 and 160 are 92.5% (GSELD with
SVM classifier), 93.4% (GSELD with LDC classifier),
95.1% (GSELD with LDC classifier), 96% (GSELD with
SVM classifier) and 96.2% (GSELD with SVM classifier),
respectively.

The experiments were carried out on 64-b, 2.67 GHz Intel
i7 920 (8 core) CPU computer with 12 GB memory, the time
was only consumed in the process of feature extraction for MPs
based on both disk and linear SEs with Partial Reconstruction.
When the training sample size of University Area data set
changes from 80 to 160, the consumed time of NWFE increases
from 14.8 seconds to 113.9 seconds, while for the proposed
GSELD, the consumed time increases from 2.4 seconds to 5.3
seconds. Fig. 8 and Fig. 9 show the performances with different
number of extracted features when 20 training samples per class
are used as training set. The Z tests using MPs based on both
disk and linear SEs with Partial Reconstruction were reported
in Table VIII–Table X. The results confirm some findings in
Fig. 5 and Fig. 6, moreover we find the following:
1) Most information of the generated MPs can be preserved
even with a few extracted features. For 1 NN classifier,
when the number of extracted features is more than 7, the
results of NWFE and GSELD are better than that without

TABLE VIII
LDC CLASSIFIER: STATISTICAL SIGNIFICANCE OF DIFFERENCES IN

CLASSIFICATION (Z) OVER FIVE RUNS. EACH CASE OF THE TABLE REPRESENTS
WHERE R IS THE ROW AND C IS THE COLUMN, 20 TRAINING SAMPLES

PER CLASS WERE USED. THE MPS ARE BASED ON BOTH DISK AND LINEAR
SES WITH PARTIAL RECONSTRUCTION

FE.When using both disk-based and linear-basedMPs, the
difference is statistically significant with . For
the SVM classifier using both disk-based and linear-based
MPs, the proposed GSELD gets better result even with 9
extracted features.

2) Using only features may not be enough in some sit-
uation, which is one limitation of LDA. PCA and NPE can
improve their performances by using more extracted fea-
tures, as shown in Fig. 7 and Fig. 8.Whenmore features are
used, the overall classification accuracy can be improved
with statistical significance .

3) The proposed GSELD outperforms the other feature ex-
traction methods with all these three classifiers, with
. When using both the disk-based and linear-based mor-
phological features, the proposed GSELD gets the highest



LIAO et al.: CLASSIFICATION OF HYPERSPECTRAL DATA OVER URBAN AREAS 1189

TABLE IX
1 NN CLASSIFIER: STATISTICAL SIGNIFICANCE OF DIFFERENCES IN

CLASSIFICATION (Z) OVER FIVE RUNS. EACH CASE OF THE TABLE REPRESENTS
WHERE R IS THE ROW AND C IS THE COLUMN, 20 TRAINING SAMPLES

PER CLASS WERE USED. THE MPS ARE BASED ON BOTH DISK AND LINEAR
SES WITH PARTIAL RECONSTRUCTION

TABLE X
SVM CLASSIFIER: STATISTICAL SIGNIFICANCE OF DIFFERENCES IN

CLASSIFICATION (Z) OVER FIVE RUNS. EACH CASE OF THE TABLE REPRESENTS
WHERE R IS THE ROW AND C IS THE COLUMN, 20 TRAINING SAMPLES

PER CLASS WERE USED. THE MPS ARE BASED ON BOTH DISK AND LINEAR
SES WITH PARTIAL RECONSTRUCTION

OA for all these three classifiers. The highest OA for LDC
classifier, 1 NN classifier and SVM classifier are 93.4%
(GSELD with 14 extracted features), 90% (GSELD with
14 extracted features) and 93.2% (GSELD with 10 ex-
tracted features), respectively.

V. CONCLUSION

In this study, we first investigated the morphological profiles
with partial reconstruction and directional morphological pro-
files for the classification of high resolution hyperspectral im-
ages from urban areas. We showed on two real urban hyperspec-
tral data sets that the MPs with partial reconstruction are more
competitive than those with no reconstruction and with recon-
struction, and some classes like road are classified better with
the directional morphological features. Secondly, we developed
a semi-supervised feature extraction as a preprocessing tool to
reduce the dimensionality of the generated morphological pro-
files for classification. The results show that feature extraction
can improve significantly the performance for some classifiers,
and the proposed semi-supervised method compares favorably
with conventional feature extraction methods as preprocessing
approaches for the morphological profiles generated on high
resolution hyperspectral data from the urban area.
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