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A Versatile Wavelet Domain Noise Filtration
Technique for Medical Imaging

Aleksandra Pižurica, Wilfried Philips, Ignace Lemahieu, and Marc Acheroy

Abstract—In this paper, we propose a robust wavelet do-
main method for noise filtering in medical images. The
proposed method adapts itself to various types of image
noise as well as to the preference of the medical expert: a
single parameter can be used to balance the preservation
of (expert-dependent) relevant details against the degree of
noise reduction.

The algorithm exploits generally valid knowledge about
the correlation of significant image features across the res-
olution scales to perform a preliminary coefficient classifi-
cation. This preliminary coefficient classification is used to
empirically estimate the statistical distributions of the co-
efficients that represent useful image features on the one
hand and mainly noise on the other. The adaptation to the
spatial context in the image is achieved by using a wavelet
domain indicator of the local spatial activity. The proposed
method is of low-complexity, both in its implementation and
execution time. The results demonstrate its usefulness for
noise suppression in medical ultrasound and magnetic reso-
nance imaging. In these applications, the proposed method
clearly outperforms single-resolution spatially adaptive al-
gorithms, in terms of quantitative performance measures as
well as in terms of visual quality of the images.

Index Terms—Noise reduction, wavelets, joint detection
and estimation, generalized likelihood ratio.

I. Introduction

IN medical images, noise suppression is a particularly del-
icate and difficult task. A trade off between noise reduc-

tion and the preservation of actual image features has to
be made in a way that enhances the diagnostically rele-
vant image content. Image processing specialists usually
lack the biomedical expertise to judge the diagnostic rele-
vance of the denoising results. For example, in ultrasound
images, speckle noise may contain information useful to
medical experts [39]; the use of speckled texture for a di-
agnosis was discussed in [18], [35]. Also, biomedical images
show extreme variability and it is necessary to operate on
a case by case basis [36]. This motivates the construction
of robust and versatile denoising methods that are appli-
cable to various circumstances, rather than being optimal
under very specific conditions. The notion of robustness in
multiscale denoising was addressed in [19]. In this paper,
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we propose one robust method that adapts itself to various
types of image noise as well as to the preference of the med-
ical expert: a single parameter can be used to balance the
preservation of (expert-dependent) relevant details against
the degree of noise reduction.

In image denoising one often faces uncertainty about
the presence of a given “feature of interest” (e.g., an im-
age edge) in a noisy observation. Due to the sparsity of
the wavelet representation, the Middleton’s optimum cou-
pled detection and estimation approach [28] seems well
suited for wavelet domain image denoising. To the au-
thors’ knowledge such approaches have received little at-
tention so far in wavelet domain filtering. Bayesian meth-
ods [2], [5], [37] take the uncertainty of the signal pres-
ence into account implicitly, assuming a Bernoulli process
on the wavelet coefficients [20] and using Gaussian mix-
ture models for the probability density functions of the
wavelet coefficients. Related hereto, but more sophisti-
cated, spatially adaptive methods usually employ complex
algorithms, based on hidden Markov tree models [6], [10]
or Markov random field prior models [17], [23], [31]. Other
recent trends in wavelet-based image denoising include ap-
plying different types of filtering in supposedly smooth and
supposedly heterogeneous or “edged” image regions [12],
[21], spatially adaptive thresholding [4] and locally adap-
tive Wiener filtering [29].

Recently, we proposed an alternative, low-complexity
joint detection and estimation method [32]. In particu-
lar, the method applies the minimum mean squared error
criterion assuming that each wavelet coefficient represents
a “signal of interest” with a probability p < 1, leading
to the generalized likelihood ratio [28] formulation in the
wavelet domain. In [32], we introduced an analytical model
for the probability of signal presence, which is adapted to
the global coefficient histogram and to a local indicator of
spatial activity (e.g., the locally averaged magnitude of the
wavelet coefficients).

In this paper, we propose a related, but more flexible
method, which is applicable to various and unknown types
of image noise. In particular, we do not rely on the ex-
act prior knowledge of the noise distribution, which allows
one to estimate the probability density function (pdf) of
noise-free wavelet coefficients from the noisy histogram.
Instead, we employ a preliminary detection of the wavelet
coefficients that represent the features of interest in order
to empirically estimate the conditional pdf’s of the coeffi-
cients given the useful features and given background noise.
At the same time, the preliminary coefficient classification
is also exploited to empirically estimate the correspond-



2

ing conditional pdf’s of the local spatial activity indicator.
The preliminary classification step in the proposed method
relies on the persistence of useful wavelet coefficients across
the scales [25], and is related to the one in [38], but avoids
its iterative procedure. In contrast to [38], and related
methods like [11], [15], where the inter-scale correlations
between wavelet coefficients are used for a “hard” selec-
tion of the coefficients from which the denoised image is
reconstructed, our algorithm performs a soft modification
of the coefficients adapted to the spatial image context.

The classification step of the proposed method involves
an adjustable parameter that is related to the notion of
the expert-defined “relevant image features”. In certain
applications the optimal value of this parameter can be se-
lected as the one that maximizes the signal-to-noise ratio
(SNR) and the algorithm can operate as fully automatic.
However, we believe that in most medical applications the
tuning of this parameter leading to a gradual noise sup-
pression may be advantageous. The proposed algorithm is
simple to implement and fast. We demonstrate its useful-
ness for denoising and enhancement of the ultrasound and
the magnetic resonance images.

The paper is organized as follows. In Section II, the
theoretical concept behind the proposed method and the
new, practical algorithm are described. The application
of the proposed method to ultrasound images is demon-
strated and discussed in Section III. In Section IV, noise
removal from the magnetic resonance images is addressed.
The method is discussed in Section V, and the concluding
remarks are in Section VI.

II. Proposed Method

A. Notation and Model Assumptions

In a wavelet decomposition of an image [24] a wavelet co-
efficient wD

k,j represents its bandpass content at resolution
scale 2j (1 ≤ j ≤ J), spatial position k and orientation D.
The lowpass image content is represented by scaling coeffi-
cients uk,J . Typically, three orientation subbands are used:
D ∈ {LH,HL,HH}, leading to three detail images at each
scale, characterized by horizontal, vertical and diagonal di-
rections. We use a non-decimated wavelet transform, with
an equal number of coefficients at each resolution scale.
The algorithm is implemented using the quadratic spline
wavelet [25], as in [23], [38]. Whenever there can be no con-
fusion, we omit the indices of the wavelet coefficients that
denote the scale and the orientation. We start from a gen-
eral noise model wk = yk ⊕ nk, where yk is the unknown
noise-free wavelet coefficient, ⊕ a point-wise mathemati-
cal operation and nk an arbitrary noise contribution. Our
wavelet domain estimation approach relies on the joint de-
tection and estimation theory [28] and is related to the
problem of the spectral amplitude estimation in [1], [9],
[26].

Let Xk denote a random variable, which takes values
xk from the binary label set {0, 1}. The hypothesis “the
wavelet coefficient wk represents a signal of interest” is
equivalent to the event Xk = 1, and the opposite hy-

pothesis is equivalent to Xk = 0. The wavelet coefficients
representing the signal of interest in a given subband are
identically distributed random variables with the proba-
bility density function pWk|Xk

(wk|1). Similarly, the coeffi-
cients in the same subband, corresponding to the absence
of the signal of interest, are random variables with the pdf
pWk|Xk

(wk|0).
Under our model assumptions, the minimum mean

squared error estimate (the conditional mean) of yk is
ŷk = E(yk|wk,Xk = 1)P (Xk = 1|wk) + E(yk|wk,Xk =
0)P (Xk = 0|wk), where E(·) stands for the expected value.
We proceed with the simplifications equivalent to those in
[1]. If the signal of interest is surely absent in a given
wavelet coefficient, then yk � 0 and E(yk|wk,Xk = 0) � 0.
In the case where the signal of interest is surely present,
we approximate E(yk|wk,Xk = 1) � wk which accounts
for the fact that vast majority of the coefficient magni-
tudes representing the signal of interest are highly above
the noise level. Applying Bayes’ rule, one can express
P (Xk = 1|wk) as a generalized likelihood ratio [28], and
our estimate becomes

ŷk =
ξkµk

1 + ξkµk
wk, (1)

where
ξk =

pWk|Xk
(wk|1)

pWk|Xk
(wk|0)

, µk =
P (Xk = 1|P)
P (Xk = 0|P)

, (2)

and P, like in [1], symbolically denotes the prior knowledge
that is used to estimate the probability of signal presence.
In [32], we proposed a method to estimate this probabil-
ity for each wavelet coefficient from its local surrounding,
using a chosen indicator ek of the local spatial activity.
In particular, since our estimate of the probability of sig-
nal presence is a function of ek, we write P (Xk = 1|P)=
P (Xk = 1|ek), and replace µk in (2) by

µ̂k =
P (Xk = 1|ek)
P (Xk = 0|ek)

= r
pEk|Xk

(ek|1)
pEk|Xk

(ek|0)
, (3)

where r is the ratio of unconditional prior probabilities

r =
P (Xk = 1)
P (Xk = 0)

. (4)

For a given type of noise, one can derive the complete
estimator analytically [32]. In such approaches, where the
required conditional densities need to be analytically ex-
pressed, the choice of the local spatial activity indicator
is usually restricted to simple forms: even when ek is de-
fined simply as the locally averaged coefficient magnitude,
certain simplifying assumptions about the statistical prop-
erties of the wavelet coefficients are needed in order to
derive pEk|Xk

(ek|xk) analytically. The algorithm that we
propose in this paper is applicable to various noise types,
and allows an arbitrary choice of ek.

B. The New Algorithm

The idea behind the proposed algorithm is to empiri-
cally estimate the probabilities and the probability den-
sity functions that specify the estimator (1). Let N denote
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the number of wavelet coefficients in a detail image. For
each detail image wD

j = {wD
1,j ...w

D
N,j}, we first estimate

the mask x̂D
j = {x̂D

1,j ...x̂
D
N,j}, which indicates the positions

of significant wavelet coefficients (representing the signal
of interest). As usual, we relate the notion of significant
wavelet coefficients to the standard deviation of the noise
[17], [25]. Also, we rely on the persistence of significant
wavelet coefficients across resolution scales [25], [38]. In
particular, we extend our robust coarse-to-fine classifica-
tion method from [33] as follows:

x̂D
k,j =

{ 0, if |wD
k,j ||ŷD

k,j+1| < (Kσ̂D
j )2,

1, if |wD
k,j ||ŷD

k,j+1| ≥ (Kσ̂D
j )2, (5)

where σ̂D
j is an estimate of the noise standard deviation

in the detail image wD
j , and K is a heuristic, tunable

parameter that controls the notion of the signal of in-
terest. We estimate the standard deviation of the input
noise σ̂ as the median absolute deviation of the wavelet
coefficients in the HH subband at the finest resolution
scale, divided by 0.6745 [7]. In estimating σ̂D

j , we follow
[12]: (σ̂D

j )2 = SD
j σ̂2, where for each subband the con-

stant SD
j is calculated from the filter coefficients of the

highpass filter g and the lowpass filter h of the discrete

wavelet transform, as SLH,HL
j =

(∑
k g2

k

)(∑
l h

2
l

)2j−1

,

and SHH
j =

(∑
k g2

k

)2(∑
l h

2
l

)2(j−1)

. To initialize the

classification (5), we start from ŷD
J = wD

J , where J is the
coarsest resolution level in the wavelet decomposition.

Now we address the estimation of the wavelet coeffi-
cients wD

j using the estimated mask x̂D
j . The estimator

(1) requires the conditional densities pWk|Xk
(wk|xk) and

pEk|Xk
(ek|xk). Since pWk|Xk

(wk|xk) is usually highly sym-
metrical around 0, in practice we shall rather estimate the
conditional pdf’s pMk|Xk

(mk|xk) of the coefficient magni-
tudes mk = |wk|. As the local spatial activity indicator ek,
we use the averaged energy of the neighboring coefficients
of wk, where the neighbors are the surrounding coefficients
in a square window at the same scale and the “parent”
(i.e., the coefficient at the same spatial position at the first
coarser scale). Having the estimated mask x̂ = {x̂1...x̂N},
let S0 = {k : x̂k = 0} and S1 = {k : x̂k = 1}. The empiri-
cal estimates p̂Mk|Xk

(mk|0) and p̂Ek|Xk
(ek|0) are computed

from the histograms of {mk : k ∈ S0} and {ek : k ∈ S0}, re-
spectively (by normalizing the area under the histogram).
Similarly, p̂Mk|Xk

(wk|1) and p̂Ek|Xk
(ek|1) are computed

from the corresponding histograms for k ∈ S1.
Our estimation approach still requires the probability

ratio (4). Reasoning that P (Xk = 1) can be estimated
as the fractional number of labels for which x̂k = 1, we
estimate the parameter r from (4) as

r̂ =
∑N

k=1 x̂k

N − ∑N
k=1 x̂k

. (6)

The practical estimator that we apply is thus

ŷk =
r̂ξ̂kη̂k

1 + r̂ξ̂kη̂k

wk, (7)

where

ξ̂k =
p̂Mk|Xk

(mk|1)
p̂Mk|Xk

(mk|0)
, and η̂k =

p̂Ek|Xk
(ek|1)

p̂Ek|Xk
(ek|0)

. (8)

In Fig. 1, we show an example of the empirical densities
p̂Mk|Xk

(mk|xk) and p̂Ek|Xk
(ek|xk). The direct computa-

tion of the ratios ξ̂k and η̂k from the normalized histograms
shown in Fig. 1 is not appropriate due to errors in the
tails. One solution is to first fit a certain distribution to
the histogram. Here we apply a simpler approach, observ-
ing that both log(ξ̂k) and log(η̂k) can be approximated well
by fitting a piece-wise linear curve as illustrated in Fig. 1.
Formally, we approximate

log(ξ̂k) �
{

a1 + b1mk, ξ̂k < 1,

a2 + b2mk, ξ̂k ≥ 1,
(9)

log(η̂k) �
{

c1 + d1ek, η̂k < 1,
c2 + d2ek, η̂k ≥ 1.

(10)

The fitting in (9) is done as follows. For the index set
Rξ = {l : p̂M |X(ml|0) �= 0, p̂M |X(ml|1) �= 0}, we compute
the log-ratios ξlog = {log(p̂M |X(ml|1))− log(p̂M |X(ml|0)) :
l ∈ Rξ}. Further on, let Rξ,1 = {l : l ∈ Rξ, ξlog,l < 0} and
Rξ,2 = {l : l ∈ Rξ, ξlog,l ≥ 0}. We look for the poly-
nomial coefficients a1, b1, which minimize

∑
l∈Rξ,1

(a1ml +
b1 − ξlog,l)2, and the polynomial coefficients a2, b2, which
minimize

∑
l∈Rξ,2

(a2ml + b2 − ξlog,l)2, i.e., which are opti-
mal in the least-square sense. The equivalent procedure is
applied to find the coefficients c1, d1 and c2, d2 in (10).

This completes the specification of the proposed method;
the algorithm is summarized in the Appendix. We demon-
strate next its applications, using J = 4 decomposition
levels.

III. Application to Ultrasound Images

Ultrasound images are corrupted by speckle noise [13],
[39], which affects all coherent imaging systems. Fig. 2 il-
lustrates the examples of gradual speckle suppression using
the proposed method. The results in this figure correspond
to the window size 5x5 and different values of the tuning
parameter K in (5). The results demonstrate that the
increase of K leads to a stronger suppression of the back-
ground texture and to the enhancement of sharp intensity
variations.

To investigate the quantitative performance of the
method, we use images with artificial speckle noise. A
speckled image d = {d1...dN} is commonly modelled as
[3], [34] dk = fkvk, where f = {f1...fN} is a reference
noise-free image, and v = {v1...vN} is a unit mean ran-
dom field. Realistic spatially correlated speckle noise vk

in ultrasound images can be simulated by lowpass filtering
a complex Gaussian random field and taking the magni-
tude of the filtered output [34]. We perform the lowpass
filtering by averaging the complex values in a 3x3 sliding
window. Such a short-term correlation was found suffi-
cient [3] to model the realistic images well. By changing
the variance of the underlying complex Gaussian random
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Fig. 1. Examples of the empirical pdf’s and fitted log-ratios in the proposed method, for the top left ultrasound image from Fig. 2.

field, we generate images with different levels of speckle
noise. We use two types of reference noise-free images: (1)
realistic ultrasound images from Fig. 3, in which natural
speckle noise was previously suppressed by the proposed
method, and (2) a purely synthetic image in Fig. 4, which
consists of regions with uniform intensity, sharp edges, and
strong scatterers. As a quantitative performance measure,
we use the signal to noise ratio in dB, defined as

SNR = 10 log(Ps/Pn), (11)

where Ps is the variance of the noise-free reference image,
and Pn is the noise variance. Regarding the noise sup-
pression performance, the proposed method shows a stable
behavior with respect to the tuning parameter K. Fig. 6
demonstrates that for different noise levels and for differ-
ent test images the same value of this parameter (K = 3)
can be chosen to provide a nearly maximum output SNR.
It can also be seen that the window size 3x3 is optimal
under the assumed speckle model.

We compare the performance of the proposed method
to one conventional approach in speckle filtering: the ho-
momorphic Wiener filter [3], [16]. In particular, we ap-
ply Matlab’s spatially adaptive Wiener filter to the im-
age logarithm and subsequently perform the exponential
transformation on the filtered output. The window size
of the Wiener filter was experimentally optimized to pro-
duce the maximum output SNR for each test image and for
each amount of noise used in the simulations. The results
clearly demonstrate that the proposed filter outperforms
the homomorphic spatially adaptive Wiener filtering both

in terms of SNR (Fig. 7) and in terms of the visual quality
(Fig. 3 and Fig. 4). Finally, Fig. 5 enables us to make a vi-
sual comparison of the results of the proposed method and
the homomorphic Wiener filter on a real image without
synthetic noise.

IV. Application to MRI Images

In magnetic resonance imaging [8], [14], [22], [27] the
practical limits of the acquisition time impose a trade-off
between the signal to noise ratio and the image resolution.
The MRI image is commonly reconstructed by comput-
ing the inverse discrete Fourier transform of the raw data.
Most commonly, the magnitude of the reconstructed im-
age is used for visual inspection and for computer analysis.
Noise in the MRI image magnitude is Rician [30], having
a signal dependent mean.

Previously proposed wavelet domain filtering techniques
were based on different thresholding schemes [30], [40], in-
cluding [38], where the coefficient selection was based on
inter-scale correlations. Our algorithm offers an additional
functionality, which is the adaptation to the local spatial
context.

In [30], it was noted that, due to the signal-dependent
mean of the Rician noise, both wavelet and scaling coeffi-
cients of a noisy MRI image are biased estimates of their
noise-free counterparts. It was shown that one can effi-
ciently overcome this problem by filtering the square of
the MRI magnitude image in the wavelet domain. In the
squared magnitude image, data are non-central chi-square
distributed, and the wavelet coefficients are no longer bi-
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Fig. 2. Gradual noise suppression in ultrasound images using the proposed method.

ased estimates of their noise-free counterparts. The bias
still remains in the scaling coefficients, but is not signal-
dependent and it can be removed easily [30]: at the reso-
lution scale 2j , from each scaling coefficient 2j+1σc should
be subtracted, where σ2

c is the underlying complex Gaus-
sian noise variance. We therefore apply our method to
the squared magnitude of the MRI image, subtract the
constant bias from the scaling coefficients, and subse-
quently compute the square root of the denoised squared-
magnitude image.

First, we illustrate the performance of the proposed
method on an MRI image with artificially added noise, and
compare it to the spatially adaptive Wiener filter. The ref-
erence (“noise-free”) image is a sufficiently clean, original
MRI image of a human brain shown as the top left image in
Fig. 8. In simulations, complex zero mean white Gaussian
noise with standard deviation σc was added to this image.
The top right image in Fig. 8 shows the noisy MRI mag-
nitude for σc = 30. The denoising result of the proposed
method, shown in Fig. 8 clearly outperforms the result of
the spatially adaptive Wiener filtering.

The quantitative performance of the method, for the 3x3
window size is illustrated in Fig. 9. For different noise levels
the optimal value of K is in the range [1.8, 2], and the al-

gorithm shows a stable behavior with respect to K. In our
experiments, on a number of different reference MRI im-
ages, the improvement over the spatially adaptive Wiener
filtering was at least 0.5 dB (for relatively clean images)
and more than 3 dB for low SNR images. In Fig. 9(b),
we illustrate such a comparison between the two filters for
the reference image from Fig. 8. For the Wiener filter, the
window size was optimized for each noise level, to produce
maximum output SNR.

The application of the proposed method to real noisy
MRI images is demonstrated in Fig. 10. The MRI images
were provided by the University hospital of Ghent. The
noise suppression in these images is expected to facilitate
further automatic processing, like e.g., segmentation.

V. Discussion

The proposed denoising method involves one adjustable
parameter, K. For MRI images, its optimal value in terms
of SNR is K ≈ 2. For ultrasound images, we found the
value K = 3 optimal under the assumed speckle model.
In practice, a wide range of other values can be used; the
adjustment is left to the medical expert who finally controls
the image interpretation. Increasing the value of K leads
to an increased smoothing of weak image textures while
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TEST IMAGE 1

TEST IMAGE 2

ARTIFICIAL SPECKLE

ARTIFICIAL SPECKLE

PROPOSED FILTER, 5x5, K=3

PROPOSED FILTER, 5x5, K=3

HOMOMORPHIC WIENER 5x5

HOMOMORPHIC WIENER 5x5

Fig. 3. From left to right: test images, artificially speckled images, the results of the homomorphic spatially adaptive Wiener filter, and the
results of the proposed method, for K = 3 and window size 5x5.

TEST IMAGE 2 ARTIFICIAL SPECKLE HOMOMORPHIC WIENER 3x3 PROPOSED FILTER, 3x3, K=7

Fig. 4. From left to right: synthetic test image, artificially speckled image (SNR=8.7 dB), the result of the homomorphic spatially adaptive
Wiener filter (SNR=11.3 dB), and the result of the proposed method (SNR=15.0 dB), for K = 7 and window size 3x3.

enhancing the presence of the main image discontinuities,
as shown in Fig. 2.

The tuning of the parameter K may also be interpreted
as (partly) compensating the errors introduced in estimat-
ing the noise standard deviation σD

J , which is required for
the preliminary coefficient classification (5). In our algo-
rithm, the estimates σ̂D

j are found following [12] and are
quite accurate for spatially non correlated noise. A more
involved statistical modelling is required to estimate σD

j

accurately for correlated speckle in ultrasound images. In
our experiments, the use of accurate values of σD

j instead of
the estimated ones did not improve the noise suppression
performance of the proposed method significantly.

The local spatial activity indicator ek in the proposed
method is computed by locally averaging the neighboring
coefficient magnitudes. The window size 3x3 was found

optimal, in terms of SNR, both for ultrasound and for
MRI images. It would be interesting to investigate the
use of other forms for ek. For example, the influence of
the neighboring coefficients could be weighted according
to their distance from the central coefficient and/or other
than squared window shapes can be used.

We used four decomposition levels of the wavelet trans-
form. Using more levels did not seem to improve the noise
suppression performance.

VI. Conclusion

In this paper, we proposed a new, robust and efficient
wavelet domain denoising technique, which is applicable to
various types of image noise. The proposed method is in
particular interesting for medical image denoising, since
it accounts for the preference of the medical expert: a
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Fig. 5. An original ultrasound image (left) and the results of the Homomorphic Wiener filter (middle) and the proposed filter (right). The
window size for both filters is 3x3.
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Fig. 6. The performance of the proposed method as a function of the value of the parameter K. (a) Test image 1 from Fig.3, input
SNR=13.6 dB. (b) Test image 2 from Fig.3, input SNR=11.6 dB.
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Fig. 7. Comparison between the proposed filter and the homomorphic Wiener filter. (a) The synthetic test image from Fig. 4. (b) The top
left ultrasound image from Fig. 3.

single parameter can be used to balance the preservation
of (expert-dependent) relevant details against the degree
of noise reduction. Such a user interaction is in the first
place useful for speckle noise removal from the ultrasound
images. The proposed method is of low-complexity, both
in its implementation and execution time. It adapts it-

self to unknown noise distributions and to the local spatial
image context. We demonstrated its usefulness for noise
suppression in ultrasound and in MRI images.
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ORIGINAL MRI IMAGE

SPATIALLY ADAPTIVE WIENER 5x5

ARTIFICIAL RICIAN NOISE

PROPOSED FILTER, 3x3, K=2

Fig. 8. Top left: original MRI image. Top right: image with artificial Rician noise (σc = 30, SNR=5.9 dB). Bottom left: the result of
the spatially adaptive Wiener filtering (SNR=10.1 dB). Bottom right: the result of the proposed method for K = 2 and 3x3 window size
(SNR=12.9 dB).

VII. Appendix

The algorithm described in Section II. B can be summa-
rized briefly as follows:

• Compute the non decimated wavelet transform with
J resolution levels.

• Initialize ŷD
J = wD

J , D ∈ {HL,LH,HH}.
• For each orientation D and for each scale 2j , j =

1, ..., J − 1
– For all the spatial positions k = 1, ..., N
∗ Apply (5) yielding the label estimate x̂k.
∗ Compute the local spatial activity indicator ek.

– Compute r̂ =
∑N

l=1 x̂l/(N − ∑N
l=1 x̂l).

– Define S0 = {l : x̂l = 0} and S1 = {l : x̂l = 1}

and estimate p̂M |X(m|0), p̂M |X(m|1), p̂E|X(e|0) and
p̂E|X(e|1), from the corresponding histograms of
ml = |wl| and el over l ∈ S0 and over l ∈ S1.

– Fit the log-ratios log(ξk) and log(ηk) from (9) and
(10).

– For k = 1, ..., N : ŷk = r̂ξ̂kη̂k/(1 + r̂ξ̂kη̂k)wk.
• Apply the inverse wavelet transform.
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