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Abstract

Seabed characterisation consists in the study of the physical and biological properties of the

bottom of the oceans. It is effectively achieved with sonar, a remote sensing method that cap-

tures acoustic backscatter of the seabed. Classical Machine Learning (ML) and Deep Learning

(DL) research have failed to successfully address the automatic mapping of the seabed from

noisy sonar data. This work introduces the Deep Supervised Semantic Segmentation model for

Seabed Characterisation (D4SC), a novel U-Net-like model tailored to such data and low-label

regime, and proposes a new end-to-end processing pipeline for seabed semantic segmentation.

That dual contribution achieves state-of-the-art results on a high resolution Synthetic Aperture

Sonar (SAS) survey dataset.
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1 Introduction

Seabed characterisation consists in the study of the physical and biological properties of submerged

grounds. Its forms could range from divers and Remotely Operated Vehicles (ROVs) gathering vi-

sual intelligence on sediments, possibly taking optical pictures, to seabed sampling. Sonar, which

succeeds to capture acoustic backscatter for wide areas, was proven particularly useful to detect

boundaries between rather homogeneous seabeds[1] and for Automatic Target Recognition (ATR)

within Mine Countermeasures (MCM) applications in shallow waters. Despite the remarkable de-

tection accuracies of [2], that method also reported severe performance drops in particular seabeds,

since sand ripples, rocky terrains and fields of seagrass cast shadows that might hide targets. Thus,

seabed characterisation is paramount to assess the confidence of ATRs, but also for MCM mission

planning. Our approach extends the work of [3], which addressed seabed characterisation as a pixel-

wise semantic segmentation task from high resolution sonar data, to yield state-of-the-art results

over real-world MCM operation datasets.

∗This research was funded by grant DAP-21/11 from the Belgian Royal Higher Institute for Defence.
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Figure 1: A visualisation of D4SC’s architecture from its feature maps size after the different layers
and operartions.

Deep Learning (DL) culminates with the application of Transformer models, reaching billions

of parameters and capable of handling the training on datasets comprised of billions of images[4].

This is known as the high-data and high-label regime leading to models being highly robust to noise

and outliers. Nevertheless, training on smaller datasets comprised of hundreds of images requires

other learning schemes. Thus, the seabed characterisation literature investigated deep AutoEncoder

(AE) structures, as their shrinkage to an embedded space is a regulariser in itself. For instance, [5],

[6] and [7] trained a plain AE, a ladder network and a U-Net based model. Originally, the U-Net

model[8] employed a symmetric Convolutional Neural Network (CNN) AE with skip connections,

effectively guiding the reconstruction within the decoder part with lower level features from the

encoder. Besides, [7] performed unsupervised pixel-wise segmentation with superpixels and transfer

learning, striving to reuse the knowledge learnt from natural images distribution.

State-of-the-art methods employed notwithstanding, none of the aforementioned researches have

succeeded in addressing wide-range automatic mapping of the seabed from low-label regime. Addi-

tionally, the input sonar data is hard to exploit due to the complex propagation of sound underwater

and the different sources of acquisition errors and noise. The main one is the speckle noise, as a

result of coherent imaging. To address both issues, we propose a novel U-Net-like model altogether

with new data augmentation schemes. They blend in an end-to-end learning pipeline which achieves

state-of-the-art results. It is introduced in Section 2. Then, Section 3 describes the SAS dataset.

Section 4 presents D4SC’s results over such data. Finally, section 5 concludes the paper.

2 Method

As the annotation procedure necessitates the support of experts or even in-field analyses, seabed

characterisation falls in the low-label regime. To guide the learning phase, the literature is prone to
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using either unsupervised, semi-supervised or self-supervised strategies. Other approaches strive to

make the most of the knowledge of expert oracles and employ an iterative human-in-the-loop strategy

called active learning. When addressing not only low-label but also low-data regimes, successful DL

researches employ domain adaptation with transfer learning strategies. However, as acoustic tiles

are rather homogeneous yet noisier than their visual counterpart, DL seabed characterisation will

hardly benefit from this knowledge, while suffering from the massive amount of intermediate features

to combine.

2.1 Architecture design

The overall design of our approach is meant to shred trainable parameters to avoid overfitting

with low-label regime as it addresses seabed segmentation with limited classes and data. The

proposed architecture, which is depicted in Fig. 1, employs a U-Net[8] encoder, but substitutes the

last embedded space convolutional layer with an Atrous Spatial Pyramid Pooling (ASPP) block,

feeding the features to a reduced decoder, as in Deeplab[9]. Additionally, we replace all remaining

convolution layers, except the first one, by linear bottleneck blocks[10], that were proven state-of-the-

art on embedded systems with limited cache memory. Besides, [11] showed them to be cutting-edge

with different sizes and applications, which is all the more important to stabilize the training in

low-label regime.

2.2 Data augmentation schemes

The deeper neural networks get, the more data they need to be fed with to achieve good results. One

possible way to extend datasets is to perform thorough augmentations. While standard computer

vision schemes for data augmentation consist in affine and color-space transforms, we extend them

with a particular focus on the physical meaning of sonar data, depicted in Fig. 2. However em-

ploying them as is improved the classification results in computer vision challenges, seabed semantic

(a) (b) (c) (d) (e)
(g)

(f)

Figure 2: Diagram illustrating the detailed random data augmentation pipeline : (a) Flips, (b)
Rotation, (c) Scaling, (d) Translation, (e) Intensity and Contrast Jittering. Following classical data
augmentation schemes from computer vision, the resulting cropped patch represented by the dark
blue square would only retain pixel information from the teal square, producing the (f) 256 × 256
pixels patch, whereas our method keep the cropped patch filled with natural input information (g).
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segmentation would suffer from them as it would introduce non-physically based textures, non-noisy

flat bottoms or impossible shadows in the input distribution. Therefore, we define pixel coordinates

for patches and perform on-the-fly augmentations over them following standard computer vision

schemes, but on bigger input patches, to ensure the final crop only spans natural input information

– Fig. 2(g). Additionally, as shadows are only cast in range, it prevents us from applying anything

but small random rotations to keep real-looking sonar images.

3 Description of the data

3.1 Description of the dataset

The Centre for Maritime Experimentation and Research (CMRE), conducted multiple surveys at sea

over the past decade, with the MUSCLE Autonomous Underwater Vehicle (AUV) high-frequency

SAS at an acquisition centre frequency of 300 kHz and gathered a large amount of data at a ground

resolution up to 1.5 cm. One of those campaign was conducted in Latvia and mainly captured smooth

flat bottom, sand ripples and rock outcrops altogether with underwater targets and confusers laid on

the seabed within a MCM exercises scope. This dataset was best described in [2] and [3]. Numerous

research publications addressed similar data, such as [12]. We follow its preprocessing pipeline

performing median normalization in range and then azimuth over each image.

3.2 Manual Annotation

As the seabed is rather homogeneous within large areas for its characterisation with generic classes

and only scarcely inhomogeneous, the polygon annotation strategy was selected to perform an effi-

cient ground thruthing of seventeen randomly selected images of size 4400×2000 pixels. As they were

spanning all natural and representative textures of the different classes but also multiple examples

of particular seabed configurations from real data, such as a mega-ripple being high enough to cast

shadows over a wide range, it was enough to start addressing seabed characterisation. Additionally,

each manually drawn polygon was labelled with four disjoint classes, namely Flat Bottom, Rocks,

Small Sand Ripples and Large Sand Ripples. As there is no vegetation in the whole survey, those

classes embody the standard seabed classification scheme for MCM operations[3].

Although polygons were drawn to preserve boundaries between classes, as stated by [3], the

annotation task is hard and sometimes the resulting borders are rather arbitrary. In addition,

the tedious manual polygonal labelling task prevents annotators to dive deep into the image and to

recover sediments surrounded by rock outcrops or the scarce boulders in the dead of large sandy areas.

We restricted ourselves to patterns larger than 15 cm, being smaller than a MCM target. Besides,

for complex seabeds describing the mixed aspect of an area, for instance a rock outcrop slowly

emerging or being buried from smooth flat sand, the labelling procedure needs to bias one of the two

resulting classes. Finally, it constitutes a good baseline for the evaluation of models addressing the

issue of seabed segmentation. While some tiles could be described in a couple polygons, the ones

depicting the hardest terrains with interlaced boundaries are comprised of dozens of polygons. The

most challenging tile, and its one hundred polygons, is put aside from the Train set, for performances
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(a) Ground truth map of the Unseen set.

(b) D4SC’s predictions for a 87.2% pixel-wise accuracy.

∎ Rocks
∎ Flat Bottom

∎ Small Sand Ripples
∎ Large Sand Ripples

Figure 3: D4SC’s predictions over the Unseen set (b) compared to the ground truth (a).

evaluation on unknown seabed configurations. This very tile comprises the Unseen set and its ground

truth map is reported in Fig. 3(a).

5



4 Results

4.1 Training setup

The training of D4SC is performed within a Distributed Data Parallel (DDP) strategy with careful

choice of training hyperparameters. The 2176 pixel coordinates of the Train dataset, producing as

many randomly augmented 256 × 256 pixels patches every epoch, are split into training, validation

and test set. To prevent from getting chance results by not training the CNN enough, an early

stopping strategy with patience was employed to continue backpropagating the cross-entropy loss

until no improvement over validation can be observed. That design choice enforces results to be

more replicable. In the end, the training phase, which ranged from a couple of minutes to few

hours, was fast enough to test different meta-architecture parameters and resulted in the final D4SC

architecture.

4.2 Comparison with standard DL approaches

For deep learning based segmentation, prior arts applied domain adaptation with transfer learning

or retrained from scratch models without tailoring their architecture neither to their data nor to

their seabed characterisation task. Therefore, to compare our model, we reimplement the U-Net

model[8], extended with batch normalisation layers, and we fine-tune a Deeplab[9] with a ResNet18

feature extractor trained on ImageNet, as standard transfer learning schemes. Despite U-Net’s and

Deeplab’s costs, D4SC outperforms them while being a lot smaller, as reported in Table 1. Regardless

of the small performance drop of D4SC over the Unseen set with its 87.2% reported accuracy and its

predictions being slightly biased towards Rocks, resulting from the choice made in the annotation

procedure, it succeeds in capturing homogeneous areas and most class boundaries, as depicted in

Fig. 3(b), and forth in addressing the automatic semantic segmentation of the seabed over unknown

configurations.

4.3 The effect of data augmentation

To ensure the added value of data augmentation over the complete learning pipeline, the perfor-

mances of D4SC is evaluated with and without it, but also against the common data augmentation

pipeline derived from computer vision. The results are reported in Table 2 and show that the novel

data augmentation pipeline is able to extend the Train dataset and to ensure the generalisation

Table 1: Comparison of D4SC with U-Net[8] and Deeplab[9] in terms of pixel-wise Accuracy. The
number of trainable parameters and Giga Floating-point Operations (GFLOPs) accounts for the
simplicity of the model.

Approach
Trainable

GFLOPs
Accuracy

Parameters Train Unseen
U-Net[8] 31M 138.34 0.956 0.864
Deeplab[9] 16M 11.06 0.964 0.833
D4SC 958k 4.34 0.968 0.872
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Table 2: An evaluation of D4SC with, without augmentations and against common computer vision
augmentations.

Approach
Accuracy

Train Unseen
Without Augmentations 0.962 0.839
Common Augmentations 0.955 0.831
With our Augmentations 0.968 0.872

of the learned seabed semantic segmentation. Indeed, the misclassification results, mostly due to

patches of limited dynamic or lacking recognisable patterns, are alleviated with our method.

5 Conclusion

The careful design of the novel learning pipeline of D4SC and its data augmentations are beneficial

to seabed semantic segmentation by learning generic seabed patterns robust to noise and extending

the dataset from a real-world survey. The good results over unseen configurations show that the

proposed approach generalises well in low-label regime. Additionally, as our work did not make

the most of the available unlabelled data, future research may investigate self-supervised or active

learning methods to leverage even more the characterisation of the seabed.
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