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ABSTRACT

This work explores the potentials of structure encoding in sparse tomographic reconstructions. We are encoding
spatial structure with Markov Random Field (MRF) models and employ it within Magnetic Resonance Imaging
(MRI) and Quantitative Microwave Tomography. We illustrate thereby also different ways of MRF modelling:
as a discrete, binary field imposed on hidden labels and as a continuous model imposed on the observable field.
In case of MRI, the analyzed approach is a straightforward extension of sparse MRI methods and is related
to the so-called LaMP (Lattice Matching Pursuit) algorithm, but with a number of differences. In case of
Microwave Tomography, we give another interpretation of structured sparsity using much different, but also
effective approach. Thorough experiments demonstrate clear advantages of MRF based structure encoding in
both cases and motivate strongly further development.
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1. INTRODUCTION

We are witnessing rapid development of sparsity promoting reconstructions, among which the so-called compressed-
sensing or compressive sampling (CS).1–3 In Magnetic Resonance Imaging (MRI), CS approaches are gaining a
lot of popularity after demonstrating great potentials for improving the imaging speed.4,5 Sparsity promoting
reconstructions gained a lot of interest in other tomographic reconstructions too, including X-Ray Computerized
Tomography (CT).6 Some recent works addressed the application of CS in Microwave Imaging,7 but to our
knowledge only in the context of qualitative microwave tomography. The goal there is to locate the position of
targets only and not to reconstruct exactly the complex permittivity profile, as we attempt to do in quantitative
tomography.

The goal of this work is to explore the use of structure together with sparsity in tomographic reconstructions.
We emphasize here spatial structure and encode it with Markov Random Field models. Our spatial modeling is
applied in two types of tomographic reconstructions: MRI and Quantitative Microwave Tomography. With these
two applications we also illustrate two types of MRF based structure encoding: (1) a discrete (binary) MRF
imposed on the hidden labels (of transform coefficients, in MRI) and (2) a continuous MRF model imposed on
the observable field (in quantitative microwave tomography). While the first approach relates closely to some of
the recent ideas on structured sparsity, the second one offers an alternative formulation of structured sparsity.

Recently a number of works were reported on ideas of using data geometry, or structure, in sparse recon-
structions. These include approaches like group sparsity8,9 or group Lasso,10 block sparsity,11,12 tree sparsity,13

more general graph sparsity,14 model based sparsity,15 etc. Despite a lot of theoretical results, few works were
reported that demonstrate true benefits of using structured sparsity in practice. The existing related works in
MRI16 concentrate on dynamic time sequences and not really on spatial structure that we wish to encode here.
Our work is most closely related to LaMP (Lattice Matching Pursuit)17 where Markov Random Field prior
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was used to encode structure in sparse reconstructions using Orthogonal Matching Pursuit (OMP). The LaMP
estimator has demonstrated great potentials in surveillance videos and some limited evaluation in tomographic
reconstructions (on synthetic Shepp-Logan phantom) was also demonstrated.17,18

We develop here a related structured-sparsity approach, but with a number of differences (including different
likelihood model and different optimization algorithm: Split-Bregman19 (versus Orthogonal Matching Pursuit
in LaMP). To make a parallel with LaMP, we name this new method LaSB as an acronym of “Lattice Split-
Bregman” and we evaluate it thoroughly in MRI. We start from our recent sparse MRI technique,20 which employs
Split-Bregman optimization algorithm and shearlet regularization. Essentially, we replace the soft shrinkage of
the individual shearlet coefficients by structure-aware MRF-based estimation. This enables us to evaluate the
gain that comes solely from MRF-based structure encoding and we show with a number of simulations that this
gain is substantial in the case of Split-Bregman optimization too. The results support the findings of Cevher et
al17 where their LaMP method (MRF-based structure encoding within the OMP) was found superior to other
greedy reconstruction algorithms such as CoSaMP21 and fixed point continuation (FPC).22 We evaluate the
gain from structure encoding within a more recent and better performing optimization algorithm, and also more
thoroughly, on real MRI images and analyzing different parameter settings and showing the evolution over the
iterations.

The second part of the paper considers a different type of tomographic reconstructions: microwave tomogra-
phy. The problem is nonlinear and very challenging. We formulate a reconstruction algorithm where the energy
of the Markov Random Field model plays a role of the structured sparsity prior. The approach itself relies on
the known theory of MRF based regularizers but we think that its interpretation in terms of structured sparsity
opens some interesting possibilities for further theoretical and practical developments. Our initial results are
very encouraging and compare well with the state-of-the-art approaches in microwave tomography.

The paper is organized as follows. In Section 2, after reviewing briefly “sparse MRI” formulation and Split-
Bregman optimization, we introduce our new LaSB algorithm and demonstrate its results. In Section 3, we
formulate an alternative MRF-based structured sparsity approach and describe it in the setting of quantitative
microwave tomography. Finally, we conclude the paper in Section 4.

2. STRUCTURED SPARSITY IN MRI USING HIDDEN MRF MODEL

The primary goal of the so-called “Sparse MRI” techniques4,5 is to optimize the acqusition time versus image
quality. We consider the following problem

x⋆ = argmin
x

J(x) s.t. ∥Ax− y∥2 < σ2 (1)

where the complex vectors y ∈ CM and x ∈ CN (M ≤ N) are the acquired k-space data and the ideal (or
hypothetical desired) MRI image, respectively, in column stack ordering (i.e. the image columns stacked into
one vector). The functional J(x) is a given data complexity penalty. The measurement matrix A ∈ CM×N

is an undersampled Fourier operator (or the non-uniform Fourier transform NUFT operator for non-Cartesian
trajectories) and σ controls the fidelity of the reconstruction to the measured data.

In essence, the aim is to minimize data complexity penalty subject to data fidelity. The data complexity
penalty (sparsity prior) is commonly the L1 norm of a convex function Φ(x): J(x) = |Φ(x)|, where Φ(x) is a
sparsifying transform Φ(x) = Sx or a combination of such transforms. Usually, S is a wavelet or “wavelet-like”
(curvelet,23 shearlet24 or related) transform, or it is simply a discrete gradient25 reducing in this case J(x) to
the so-called bounded variation, i.e., total variation26 (TV norm). It is also common to use a combination
of the TV norm and a wavelet-like (i.e. Besov) regularizer: J(x) = ∥x∥TV + ∥x∥B1,1 = |▽x| + |Sx|. Such
combined regularizers in sparse MRI were already discussed by other researchers27,28 and we will also incorporate
a combination of TV and shearlet regularization in our experiments.

2.1 Split-Bregman optimization

There exist many competing algorithms21,22,29–34 to solve the constrained optimization problem in (1) with
J(x) = |Φ(x)| for convex Φ(x) and assuming mutually independent components of x. In this paper we use the



Split-Bregman method.19 This method builds on the Bregman iteration35 (or augmented Lagrangian) method,
which can be expressed as: {

xi+1 = argmin
x

J(x) + λ
2 ∥Ax− yi∥2

yi+1 = yi + y −Axi+1

(2)

The key to splitting method is to “de-couple” the L1 and L2 portions of the energy in this minimization.19

Denoting J(x) = |Φ(x)| and introducing an auxiliary variable d = Φ(x), the problem in the first line in (2)
becomes restated as

argmin
x,d

|d|+ λ

2
∥Ax− yi∥2 s.t. d = Φ(x) (3)

This is further transformed into a sequence of unconstrained problems using the Bregman formulation, so the
problem in (2) becomes:{

(xi+1,di+1) = argmin
x,d

|d|+ λ
2 ∥Ax− yi∥2 + µ

2 ∥d− Φ(x)− bi∥2

bi+1 = bi +Φ(xi+1)− di+1

(4)

which is efficiently solved by iteratively minimizing over x and d separately, yielding the full algorithm as follows:

While ∥Axi − y∥2 > σ2

For i = 1 to N
xi+1 = argmin

x

λ
2 ∥Ax− yi∥2 + µ

2 ∥di − Φ(x)− bi∥2 (step 1)

di+1 = argmin
d

|d|+ µ
2 ∥d− Φ(xi+1)− bi∥2 (step 2)

bi+1 = bi +Φ(xi+1)− di+1 (step 3)
End
yi+1 = yi + y −Axi+1 (step 4)

End

(5)

In our recent work,20 (step 1) in (5) was solved by a preconditioned conjugate gradient method (due to the
employed NUFT operator). The sparsity prior was L1 norm of the shearlet coefficients: J(x) = |Φ(x)| = |Sx|
and step 2 was solved by component-wise soft-thresholding:

[di+1]m = Θ
(
[Sxi+1 − bi]m,

1

µ

)
(6)

where the soft thresholding function Θ is defined as

Θ(u, γ) = sign(u)max(|u| − γ, 0) (7)

and [d]m denotes the m-th component of the vector d. Related approach was also discussed by the authors of
Split-Bregman method19 in somewhat more general setting with J(x) being a sum of TV norm and L1 norm of
the wavelet coefficients. Other related methods include sparse MRI using the conventional Bregman iteration.27

We will use in our experiments the same shearlet regularization as in our earlier work,20 and we will also make
some experiments with combined shearlet and TV regularization: J(x) = λTV ∥x∥TV + λS |Sx| with constants
λTV and λS weighting the influence of the two components.

2.2 LaSB - Lattice Split Bregman Algorithm

We will refer to the algorithm described in (5)-(7) as SB algorithm. Our extension to it consists in solving
step 2 in (5) differently, i.e., replacing the soft-thresholding part in (6)-(7) by MRF-based estimation. This new
algorithm will be denoted as Lattice SB or short LaSB to make a parallel with the related LaMP .17

We impose the MRF model on hidden labels attached to the (shearlet) coefficients. These hidden labels
should tell whether the coefficient is important or not, based on its magnitude and based on the prior knowledge
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Figure 1. Estimating the likelihood model from the coefficients histogram (see text).

about spatial clustering of important coefficients (in typical, say, MRI images). Conforming to the notation
above, let [l]m ∈ {−1, 1} denote a hidden label attached to the m-th coefficient [d]m, where [l]m = −1 means
that [d]m is insignificant (i.e. “not of interest”) and, contrary, [l]m = 1 means that [d]m is significant (i.e. “signal

of interest”). We will denote by l̂ the Maximum a Posteriori (MAP) estimate of the unknown label field l. Our
LaSB algorithm replaces the soft-thresholding part in SB (6)-(7) by a lattice index selector

[di+1]m = Λ
(
[Sxi+1 − bi]m, [̂l]m) (8)

with Λ defined as

Λ(ui, li) =
{ ui, li = 1

0, otherwise
(9)

In essence, we are estimating a “mask“ that denotes significant coefficients and then we select the surviving
coefficients according to this mask, while zeroing all the others. We use the Metropolis sampler36 as an inference
engine to find the MAP estimate of the hidden label field, and we run it in practice in each subband of the
sparsifying (here, shearlet) transform. Contrary to common perception about long computation time with this
type of random samplers, the Metropolis sampler converges in this application very quickly. We use only few
iterations (typically 5). Moreover, the Metropolis sampler leaves a lot of flexibility in terms of specifying the clique
potentials and likelihood models, which is not present with all inference methods (like graph cuts). However, the
use of one or the other inference method for the MAP mask estimation in our algorithm is an implementation
detail that shouldn’t influence much the results.

2.3 Specifying prior and likelihood models

MRFs encode structure by assigning appropriate potentials (or “penalties”) to certain combinations of the labels
in a group of interacting pixels, i.e., cliques. The joint probability of a MRF is a Gibbs distribution

P (L = l) =
1

Z
e−H(l)/T (10)

where the energy H(l) is decomposed as a sum of clique potentials over all possible cliques: H(l) =
∑

C∈C VC(l).

The normalizing constant Z, which sums (10) over all possible configurations L: Z =
∑

l∈L e−H(l)/T is called
the partition function and the “temperature” T controls the peaking in the probability density.36 In particular
we use the Ising model

H(l) = α
∑
i

li + β
∑
i,j∈C

lilj (11)

with the second-order neighborhood. We give no preference to either “-1” or “1” labels, so we set α=0. The
parameter β controls the strength of the clustering. If β < 0 then equal neighboring labels contribute to the
lower energy (i.e. favoring li = lj), while the opposite is true for β > 0. For this isotropic model we can define
the “neighborhood potential” as

VNi
(l) = −γ

∑
j∈Ni

lilj (12)
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Figure 2. PSNR per iteration for LaSB versus SB, with different parameter settings and with random subsampling 50%.
(a) Shearlet regularization only (SBS and LaSBS): λTV =0, λS=0.4; (b) λTV =1, λS=1; (c) λTV = 0.01, λS=0.15; (d)
λTV = 0.01, λS=0.4. SBTV denotes SB with TV regularization only (λTV = 0.01, λS=0.)

where Ni is the neighborhood of i, and γ > 0. In this way we can decompose the joint probability (10) into
contributions summed over all indices (pixels) of our lattice:

P (L = l) =
1

Z
exp

(
− 1

T

∑
i∈I

VNi(l)
)

(13)

Our likelihood model (conditional densities of the (noisy) coefficients d given the label l: pd|l(d|−1) and pd|l(d|1))
is derived as in our previous works37,38 (see schematic representation in Fig. 1). We choose a prior model p(u) for
noise-free subband coefficients u (such as Laplacian, generalized Laplacian or other suitable, highly curtotic prior)
and estimate the parameters of this prior from the noisy/degraded coefficient histogram and using knowledge
about noise standard deviation (or more general, knowledge about the image degradation). In case of MRI we use
the empty area on the borders of MRI image to estimate the noise standard deviation and scale it appropriately
to obtain noise standard deviations σ in each subband. Once the parameters of the prior model are estimated,
we need to specify a threshold Th that identifies the notion of a “significant” signal component. This is the
only parameter which is not estimated from the data. We relate this parameter to noise standard deviation,
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Figure 3. An illustration of the results in the 50% random subsampling experiment. Best results for both SB and LaSB
are shown, with λTV =0.01 and λS=0.4. For SB: PSNR=32.9dB (reached after 200 iterations); For LaSB: PSNR=37dB
(reached after 12 iterations).

similarly as in our earlier work,38 but in a more conservative manner (Th being in fact only a small fraction of σ
in each subband, of the order of 10% or even less). Once the threshold Th is specified, we obtain the conditional
probability density functions of the noise-free coefficients pu|l(u| − 1) and pu|l(u|1) by rescaling the central part
(u ≤ Th) and the tails (u > T ) of the marginal prior p(u) so that they integrate to 1. Finally, the corresponding
conditional densities of the noisy coefficients, pd|l(d| − 1) and pd|l(d|1), are obtained from pu|l(u| − 1) and
pu|l(u|1), respectively, for the given degradation model. If the degradation model in each subband is simplified
by additive white Gaussian noise, then we just need to convolve the conditional densities of the noise-free data
with a Gaussian function. In case of a more complex (and more realistic) degradation model, we might need to
calculate the corresponding densities empirically, but essentially the main idea remains the same. For the results
reported in this paper we have used the simplified white Gaussian noise model in each subband.

Having specified the prior model and the likelihood model, we can run the Metropolis sampler to yield the
MAP estimate of the spatial support of significant coefficients l̂. The Metropolis sampler perturbs randomly
labels producing from the current mask l a next “candidate” mask lC , which gets accepted with probability37

p = p(di|lCi )/p(di|li) exp(VNi(l)− VNi(l
C)).

2.4 Results: LaSB versus SB

In this Section we compare the performance of our structured sparsity LaSB algorithm to SB. In both cases we
use non-decimated shearlet transform (3 scales, 8 orientations). First we performed experiments with random
subsampling on a Cartesian grid. The results in Fig. 2 - Fig. 4 correspond to random subsampling of k-space
by 50%. For the sake of fair comparison between different methods and different parameter values, we created
randomly subsampled matrix once and then saved it and used for all the presented results.
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Figure 4. Details from Fig. 3.

The plots in Fig. 2 show Peak Signal to Noise Ratio (PSNR) as a function of the number of iterations. We
repeated experiments with many different parameter settings, some of these are illustrated in Fig. 2 (a)-(d).
In all cases, the relative comparison between LaSB and SB is similar: LaSB achieves higher PSNR and in less
iterations. Visually, LaSB reconstructs details much better than SB, see Fig. 3 and Fig. 4.

Some problems still remain. With LaSB, the PSNR drops after certain number of iterations. While this in
general can occur with here employed optimization algorithms, an additional complication could come from the
non-convexity of the employed estimator. This aspect needs to be studied further.

We also applied our LaSB algorithm on MRI images with different sampling trajectories that are used in
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Figure 5. An illustration of the results in experiments with variable density spiral trajectories.



practice or that are more feasible than random sampling given the technological constraints. In particular, we
experimented with different radial, Archimedean and variable density spirals. Remarkably, LaSB performance is
much more stable with these trajectories than in the case of random subsampling (PSNR saturates after a given
maximum). Comparing to SB, we achieve again higher PSNR and in fewer iterations. Figure 5 illustrates these
results for a variable density spiral trajectory.

3. MICROWAVE TOMOGRAPHY USING STRUCTURED SPARSITY

Quantitative microwave tomography aims at estimating the permittivity profile of an unknown object through
electromagnetic scattering experiments.39,40 The object is illuminated by transmitting antennas and the scat-
tered field is measured by receiving antennas. The inversion problem (estimating the unknown permittivity
given the scattered field and knowing the incident field) requires solving a system of nonlinear equations, which
typically involves iterative procedures. This problem (also called “full wave”39 microwave imaging) is both math-
ematically and computationally much more challenging than qualitative microwave imaging, where the goal is to
determine only qualitatively the shape of the permittivity profile and not its exact values.

Estimation of the unknown permittivity profile iterates typically between the forward problem (simulating
the scattered field based on the known or assumed permittivity profile) and the inverse problem (estimating
the unknown permittivity from the scattered field). The permittivity profile is usually initialized to the known
background permittivity. Depending on the error between the simulated and the measured scattered field, the
process is stopped or the permittivity is updated. In this update process the regularization plays an important
role, and this is where we will introduce a method based on discontinuity adaptive MRF.

3.1 The inverse scattering problem

Before formalizing the electromagnetic inverse scattering problem, let us first set the notation and introduce
some necessary background. We will consider an inhomogeneous dielectric object embedded in homogeneous
(infinitely extending in all directions) background with permittivity ϵb and permeability µ0. The interaction of
the object with time harmonic electromagnetic fields is entirely determined by its complex permittivity ϵ, which
is a function of the 3D position vector r and the angular frequency ω:40

ϵ(r, ω) = ϵ0ϵr(r, ω)− j
σ(r, ω)

ω
(14)

where ϵr is the (real) dielectric permittivity of the object and σ is the conductivity. We treat only single frequency
scattering, hence ω-dependency of the permittivity and the ejωt dependency of the phasors will be omitted.

The goal of electromagnetic inverse scattering is to reconstruct ϵ(r) within a bounded investigation domain D
(which includes the unknown object) from the multi-view scattering data. The domain D is therefore illuminated
with a number of different incident fields Einc

i (i=1,...,N I). For each such illumination i, the scattered field (i.e.
the difference between the total field and the incident field) is measured in a number of measurement points rk,i
(k=1,...,NR), which are possibly different for different i. The measurement procedure for the scattered fields is
modelled by taking the component of Escat

i along the directions vk,i in the points rk,i, i.e., E
scat
i (rk,i)vk,i.

Let escat(ϵ) be theND-dimensional vector that contains the simulated scattered field componentsEscat
i (rk,i)vk,i

for all combinations of N I illuminations and NR measurements and for a given permittivity vector ϵ. Further-
more, let the ND-dimensional vector emeas contain the measured data. The least squares data fit cost function
is then defined as40

FLS(ϵϵϵ) =
1

NLS
∥escat(ϵϵϵ)− emeas∥2 (15)

where NLS = ∥emeas∥2. Important to note is that FLS is not quadratic in ϵ, because the scattered field Einc
i (r)

is a non-linear function of the complex permittivity ϵ(r).39,40 This, together with high dimensionality, makes
the problem even more challenging.

Recent approaches to solving the inverse scattering problem usually combine the data fit term from (15)
with different regularizers, such as multiplicative smoothing (MS)39,41 and value picking (VP) regularization.42

VP achieves very good results on relatively simple piece-wise homogeneous profiles, but cannot cope well with
more complex profiles (that would appear, e.g., in natural tissues). The MS smoothing is better suited for such
profiles, but it tends to oversmooth the images.



lk ,

e
'' lk ,

e

lk
N

,

Figure 6. MRF model imposed on the field of permittivities.

3.2 MRF-based regularization and structured sparsity interpretation

Conforming to our notation of sparsity promoting reconstructions in Section 2 and without loss of generality, we
can represent the electromagnetic inverse scattering problem as

ϵ⋆ = argmin
ϵ

J(ϵ) +
λ

2
∥escat(ϵϵϵ)− emeas∥2 (16)

where J(ϵ) is our structured sparsity prior. This problem resembles obviously the formulation in (2), with the
most important difference that the second term here is not quadratic in ϵ because of the nonlinearity of escat(ϵ).

We will express J(ϵ) as the energy of the MRF field. In contrast to Section 2.2 where we used a binary MRF
on the hidden labels, here we impose a continuous MRF model on the observable field of complex permittivities
ϵ. Like in Section 2.3, the joint probability of the Markov Random Field model is the Gibbs distribution (10)
with energy decomposed as a sum of clique potentials, which is here the structured sparsity prior:

J(ϵ) = H(ϵ) =
∑
C∈C

VC(ϵ). (17)

Now the clique potentials VC(ϵ) are in general continuous functions of the complex permittivity values in the
pixels (voxels) that constitute the clique C. In practice, we will consider pairwise cliques. For simplicity of
notation, consider 2-dimensional (2D) setting (extension to 3D is straightforward). The energy function of our
MRF is hence

J(ϵ) =
∑
(i,j)

∑
(i′,j′)∈Ni,j

g(ϵi,j − ϵi′,j′) (18)

where Ni,j denotes the neighborhood of the pixel (i, j) (in practice we use 8-neighborhood system), and g(η)
is a discontinuity adaptive clique potential, which should ideally penalize small differences in permittivity but
without smoothing true transitions in the permittivity profile.

Experimenting with a number of discontinuity adaptive potential functions, we found that best results are
obtained with functions that resemble Huber loss function:

gh =
{ η2, |η| ≤ τ

2τ |η| − τ2, |η| > τ
(19)

This is interesting from the point of view of the theory of sparse reconstructions and CS literature, where the
use of Huber function as a substitute for L1 norm has been often advocated, especially from the point of view
of robustness.43,44

We have encouraging first results with this structured sparsity approach in microwave tomography. Fig. 7
shows the reconstruction results for 3 simple objects from the Fresnel database. We used a configuration with 8
transmitting and 36 receiving antennas, equally spaced on a circle within azimuthal plane. The figure shows only
the real parts of the permittivity profile. The two reference methods are recent approaches from electromagnetics
community: multiplicative smoothing (MS)41 and value picking (VP).42 The electromagnetic solvers used in the
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Figure 7. Real parts of the reconstructed permittivity profiles of three objects from the Fresnel database. Left to right:
ground truth profiles and the results of MS,41 value picking (VP)42 and our structured sparsity approach.

forward and the inverse problems are detailed in these references. We used in our experiments the same software,
provided by the authors, and for our method we replaced only the regularization part by the structured sparsity
prior J(ϵ) in (18).

Our results in Fig. 7 are clearly better and sharper than those of MS. The VP method yields very sharp
boundaries but delineation between different regions and the values of the permittivities are not always exact.
Our approach does in this way already better, even though the transitions are somewhat less sharp than in the
case of VP.

4. CONCLUSION

We presented here two types of structured sparsity approaches for tomographic reconstructions: imposing a
hidden MRF model on the labels of the transform coefficients (in MRI) and imposing a continuous model on the
observable field (in microwave tomography). We tried to use a unified notation making the parallels between the
two approaches.

The hidden MRF formulation led to our new LaSB (Lattice Split Bregman) algorithm for MRI, motivated by
the related LaMP.17 The results demonstrated clear advantages over the conventional approach which treats the
coefficients of the sparsifying transform independently: much higher signal-to-noise ratio reached and in much
less iterations. The present formulation is somewhat ad-hoc and further effort is needed to formalize it and study
its properties. The presented results motivate strongly further efforts in this direction.

In the second considered problem - microwave tomography - we offered an alternative view on structured
sparsity in tomographic reconstructions. The structured sparsity prior is formulated as energy of a continuous
MRF model imposed on the observable field (of complex permittivities). The results demonstrate excellent
performance of the Huber loss function as a discontinuity adaptive potential in this application. While this
approach builds on the classical theory of MRF regularization, we think that its interpretation as structured
sparsity can be of interest for further developments in sparsity and CS communities.
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