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ABSTRACT A first approach could be the use of a prewhitening
) L . . operation for the noise, followed by the wavelet trans-
Images, captured with digital imaging devices, oftegyation and thresholding. This solution would have

contain noise. In literature, many algorithms exist oo aqvantage that the noise components are decorrelated
the removal of white uncorrelated noise, but they usually, 4 4, algorithm designed for white noise could be used.
fail when appli_ed to images with correlated noise. 'nthiﬁlowever, the prewhitening operation not only alters
paper, we design a new denoising method for the remoygh characteristics of the noise, but also the underlying
of correlated noise, by modeling the significance of théfignal, thus the advantages diminish [8]. Therefore, the
noise-free wavelet coefficients in a local window using ihors of [8] propose a modifieghiversal threshold
a new significance measure that defines the "signal @f jepends on the noise variance on every subband of
interest” and that is applicable to correlated noise. Wge \yayelet transform. In [2] it is noted that the denoising
combine the intrascale m0(_jel with a Hidden M"?“ko}ﬁerformance can be improved by doing joint (vector-
Tree model to capture the interscale dependencies beeq) thresholding instead of thresholding each coeffi-

tween the wavelet coefficients. We propose a denoisient independently, by looking at correlated coefficients
method based on the combined model and a less [g-he spatial neighbourhood.

dundant wavelet transform. We present results that show, [4], a Bayesian Least Squares estimator with a

that the new method performs as well as Fhe state-@h ,ssian Scale Mixture prior (BLS-GSM) has been
the-art wavelet-based methods, while having a lowet,,oseq for this purpose. Local neighbourhoods of
computational complexity. coefficients are modeled as the product of a Gaussian
vector and a hidden scalar multiplier, both indepen-
dent of each other. The noise is treated as multivariate
Gaussian. The least squares, i.e. minimum mean square
IGITAL imaging devices often produce noise, origerror (MMSE) estimator for this model has been derived
inating from the analogue components (sensorand this estimator is the weighted average of the local
amplifiers) in the devices. In many cases, it is desirabl@ear (Wiener) estimates over all possible values of the
to remove the noise, not only to improve the visuatidden multiplier.
quality of the images, but also to improve compression Other authors study interscale models, which char-
performance. Multiresolution representations like thosecterize the dependencies between wavelet coefficients
based on wavelets have proven to be powerful tocds different scales. In [3], a bivariate distribution is
for image denoising and in literature many techniquassed for a wavelet coefficient and its parent, for the
have been proposed for this purpose, like [1]-[7]. It isemoval ofwhite noise. In [9], [10] multiscale stochastic
often assumed that wavelet coefficients are uncorrelateacesses on quadtrees are studied for modeling the joint
and statistically independent, allowing simple and elalistribution of the wavelet coefficients along the quadtree
gant shrinkage rules like soft and hard thresholding. ktructure of the wavelet transforrdidden Markov Tree
practice, noise samples are often correlated (for exam@¢MT) models [11]-[13] establish Markovian parent-
by demosaicking in digital cameras) and these techniquesid relationships amonbgidden state variablesather
subsequently fail when applied to images corrupted withan among the coefficients themselves. The prior pa-
correlated noise. rameters are then estimated iteratively by means of the
Baum-Welch algorithm. To overcome the lack of spatial
B. Goossens’ A-.Pifuﬂc"" r?g?nly\/émp?iicljgsngegitg t:‘“‘;EIgl‘ﬂlo"j‘"adaptation, a local contextuddidden Markov Model
FI;eBr'IIE)? Gﬁ:rioﬂmy:rlgsyl,oSsiniPieterc"sni:uwstraat 41, IB%Q Gent, (HMM) [14] offers an improvement. An additional hid-
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The work of [5] introduced an approach of estimatingime) without losing the performance.
the probability that a given wavelet coefficient represents The organization of this paper is as follows: Section Il
a signal of interest given its value and knowing th@troduces some basic concepts used in this paper. Sec-
marginal distribution of the noise-free coefficients. Thition Ill describes the intrascale statistical model that is
probability was used as a suppression factor for thesed in the wavelet domain. In Section V, the intrascale
wavelet coefficients in the so-called ProbShrink estimanodel is combined with the HMT that models interscale
tor. A locally adaptive version of this approach was alsdependencies. Results and a discussion are given in
introduced in [5] which attempts at making use of spati&ection VII. Finally, Section VIII concludes this paper.
correlations that exist between the wavelet coefficients
within the same subband. In this case, the probability ofi. M ULTISCALE WAVELET ANALYSIS OF THE NOISY
signal presence was conditioned not only on the coeffi- INPUT SIGNAL
cient value but also on a local spa_tial activ_it)_/ indicat(_)A_ The spectral noise characteristic
(LSAI) computed from the surrounding coefficients. This . . .
LSAlin [5] is practically the locally averaged coefficient . Correlgted noise (or coloured n.0|se) is usually spec-
magnitude. The rationale behind this approach was: ifIf ed by its Energy Spectral DensityESD). The ESD

noise-free component is large (small) then the majority, sgnbes hOW the energy (or variance) of a S|gnz_:1l S
of the neighbouring coefficients within a local windo |st_r|buted in frequency space and for 2-D signals it is
is also likely to be large (small) because true image dig_efmed as:

continuities typically result in spatially clustered wéate ®(k, 1) = |F(k,1)|?

coefficients. This locally adaptive estimator performs ) ) ]

quite well given its low complexity but has an intrinsticVhere F'(k, 1) is the Discrete Fourier Transform (DFT)
limitation: it is not applicable tocorrelated noise. In ©f the signal. The DFT would be the ideal choice
contrast to white noise, correlated noise can result ff transform, because it completely decorrelates the
spatially clustered large wavelet coefficients, and in thiiS€. However, the DFT cannot recover information on
case the LSAI of [5] cannot make a difference betwedjfirticular positions in the spatial domain. This makes
the signal and noise. the representatlon less cpnvenlent when it comes to

The main novelty of this work is that we estimateéA"@lyZing non-stationary signals.
the probability of signal presence given vector of
surrounding wavelet coefficients, i.e., giversiucture B. The wavelet transform
of the local neighbourhood. We are now able to estimate To overcome this deficiency, the discrete wavelet
how likely it is that a given coefficient represents signatansform has been introduced. The orthogonal discrete
or noise given true correlatedness of wavelet coefficien{gavelet transform (ODWT) decomposes a signal over
Other important contributions are combining the proan orthogonal basis of functions that are translates and
posed approach with a Hidden Markov Tree model tgilates of the analyzing wavelet, calledother wavelet
capture not only intra- but also inter-scale coefficienthis provides a non-uniform partitioning of the time
dependencies and devising a minimum mean squargface)-frequency plane, which makes it possible to
error estimator for the proposed statistical model.  retrieve information at specific spatial positions. The

This work is on the one hand an improvement an@avelet coefficients are samples of bandpass filtered
generalization of the main ideas of [5] where the estimaersions of the input signal, while the scaling coefficients
tion of probability of signal presence is now improvedare samples of lowpass filtered versions. By the linearity
applicable to cases with correlated noise, and where tbethe transform, signal independent additive noise is
estimator is combined with a powerful HMT modeltransformed into signal independent additive noise. For
On the other hand, this work can also be seen as this reason, we will transform our noisy image to the
improvement and generalization of the HMT approach&gvelet domain, estimate the noise-free wavelet coef-
of [11]-[14], where we now employ a better likelihoodficients using an additive statistical signal-plus—noise
model and a better estimation of the involved stat@odel and reconstruct the image by applying the inverse
probabilities. wavelet transform.

Finally, in relation to GSM based approaches [4], [18], Despite the efficiency and the sparsity of the deci-
this work applies GSM models to a novel problemmated wavelet transform, there are some fundamental
the estimation of the probability that a given wavelgproblems [19]: 1) positive and negative oscillations of
coefficient vector is a signal of interest. The results shothie coefficients around singularities, 2) shift variande, 3
that this alternative estimation approach, combined witdiasing caused by downsampling operations and 4) poor
the HMT model and a less redundant transform, offeirectional selectivity. For denoising, the second and
some significant savings in complexity (computatiothird problems are the most severe, since the local energy



signature of edges in the transform domain depends< 3) suffices to capture most of the noise correlations
on the edge position and the aliasing creates visuathy each scale and orientation.

disturbing artifacts in the reconstructed signal. In the

last decades, many alternative representations have bee|rp| STATISTICAL IMAGE MODEL FOR DENOISING
developed, including redundant wavelet transforms, tiE: Signal and noise model
Dual-Tree Complex Wavelet transform (DT-CWT) [20], ~

Steerable pyramids [4], the Curvelet transform [21] and !N this Section, we present a statistical model for one
the Contourlet transform [22]. In this work, we will adapgubbands, o) at scales and orientatiow of the wavelet
the DT-CWT, based on its low redundancy (factor #ansform. We assume an input image, corrupted with
for images), efficiency (by using seperable filters) andidditive coloured noise. As said before, the linearity
better directional selectivity (6 orientations) compare@f the wavelet transform yields an equivalent additive
to the orthogonal DWT. For a detailed explanation, sdglationship for subbantk, o) in the transform domain:
[19]. Vi =% +w;, j=1,.,N ®3)

C. Statistical modeling in the wavelet domain wherey;, x; and w; are the wavelet coefficients at

. - . . spatial positiory (like in raster scanning) of respectivel
To build a statistical signal-plus—noise model Wavelt?ﬁ P " ( 9) P y

) . o e observed noisy image, the original image and the
domain model that_deals with correlated noise, itis USBoise. In this notation, wavelet coefficients within a small
ful to relate the noise ESD to the correlation pmpert"%ﬁseighbourhood of sizel/ x M are clustered into a
of noise components of wavelet coefficients. Thereforc%efficient vector of sizel = M2. The neighbourhoods
we first consider the autocorrelation function of a S|gn%l ’

. . . re overlapping and are exten riodicall h
in the spatial domain, denoted B$p, q) wherep, q are e overlapping and are extended periodically at the

. ) ; ; ...image boundariesw; is assumed to be Gaussian noise
two-dimensional vectors representing the spatial pm;m?/vith sero mean and covariand.. If the noise ESD
-

e T i ot s oo, 3 he spatil domai i knoun i adance e o
de er.1ds onlv on the difference betweenptheir ositioncgvariance matrixC,, can be computed directly from the
P y P Sutocorrelation function for that subband, obtained using

R(p,q) = R(0,q — p) (1) (2). Therefore, we ignore correlations between wavelets
i ) ) coefficients that are not in the same neighbourhood of
The Wiener-Khintchine theorem [23] states that thegiza 07 « A7, If the noise ESD isiot known in advance,

autocorrelation functionz(0, q) is the inverse Fourier \yq estimateC,, for each band from the observed wavelet
transform of the noise ESD. To obtain the autocorreldqeficients.

tion function for a specific wavelet subband, at scale

s and orientationo, we apply the wavelet filters and ) ) ) S

decimations associated with each decomposition staige Bayesian spatial prior distribution

7 on the autocorrelation function of the previous stage Recent statistical studies (e.g. [2], [4]) have shown that

1 — 1, starting from the autocorrelation function in theistributions of noise-free wavelet coefficients are typi-

pixel domainR(® (0, p) as follows: cally symmetric around the mode, have a highly kurtotic
. . N (i -Gaussian behaviour and exhibit strong correlations
(i+1) _ (@) o) (i), (i) NON-LAUSS : ’

R (p,q) = Z Z RY(0,2(a—p)~k+)y’M"  egpecially in areas with edges and textures. For many

kez21ez? natural images, the histograms of the wavelet coefficients
where hl((i) represents a two-dimensional wavelet fiIteFeveal elliptical contours, which suggests the use of the

kernel (either highpass or lowpass) associated with sta liptically syr_nmetri(_: fgmily for mOd?"F‘g _this_ beh_a V-
i. From the decimation facta? in (2) it is clear that iour. The family ofelliptically symmetriadistributions is

the wavelet analysis also decomposes the autocorrelatf§iined Py the following class of densities [24]:
function and for sufficientl_y short _wavelet filters, the fy(x) = kq|C.|"?¢[(x —m)TC, (x —m)] (4)
support of the autocorrelation function becomes smaller ) o _
with each scale. This is illustrated in Fig. 1 for the DTWhere m is the mean of the distributiony(u) is a

CWT?2. It can be seen that a small square window (e.q].ne dimensional real-valued function, independent of
the number of dimensiong and k; is a proportionality

‘compared to a redundancy factot-3Ns for an undecimated DWT constant. For wavelet coefficients, one usually assumes
with 3 orientations andV, scales. thatm = 0. In this work, we use thdBessel K Form

Note that, in order to obtain the Oriented DT-CWT from sepkra . 241-126 ith:

wavelet filters [19], an extra linear transform performedheg output prior [24]-[26], with:

of the trees (see [19]) This also has influence on the orieets] of r d 2(95) /2

the autocorrelation functions and is therefore also takém account _ E 2 4 K /2 ko= ( W) 5

here. g(u) - 9 T*d/Q( U), d — F(T) ( )
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Figure 1. lllustration of the effect of the DT-CWT on a giveat@correlation function in the spatial domain (top-leftrmer; dark intensities
correspond with negative values, dark gray corresponds @iand white intensities correspond with positive valuédght below are the
autocorrelation functions transformed to the DT-CWT daméhe complex magnitude is shown, dark intensities comedpwith large
magnitudes). The bottom row contains the real parts of sbsoale complex wavelets corresponding with each oriemtati

where K;(u) is the modified Bessel function of thedensity are plotted for different values of

second kind and ordei (see [24]) andI'(r) = Other authors have proposed related GSM distribu-
fo‘x’ 2T"le7*dz is the Gamma function. In [25], it hastions like the GSM with a log-normal prior on [18]
been shown that the marginals of this distribution fitnd the GSM with Jeffrey’s prior on [4]. Among these
well with the observed histograms for a wide varietyriors, the Bessel K Form is the only one that offers
of images. This density also has the following Gaussiaxplicit control of the kurtosis, which is advantageous
Scale Mixture representation [24]: when modeling wavelet subbands of natural images (see
[25]). In [26] the Bessel K Form prior is compared to
the a-stable prior and Generalized Gaussian Distribu-
tion in modeling observed histograms by means of the
Kullback-Leibler divergence. The authors conclude that

x < om+ 220 (6)

where 2" denotes equality in distribution u is
GaussianN (0, C,) and z, called thehidden multiplier

[4], is GammadistributedT'(a = 7, 3 = 1): the Bessel K prior performs at least as well as the GGD
' ’ for modeling the statistics of wavelet coefficients of a
fz(z) = 1 T—1l,—2 (7) testset of natural images.
I(7)

F_or _the special case = 1, wh_ere_z is exponent_ially C. Prior parameter estimation

distributed, we obtain the multivariate Laplace distribu-

tion [24], [27] (see Fig. 2). For — oo, the distribution The_set of_ m0(_jel parameters for the subband a'_[ scale

approaches the Gaussian distribution (see [24]). Th@d orientatior is given by® = {7, C,, C,,}. Adding

the Bessel K Form is a generalisation of the multivariafe Gaussian process to a Bessel K Form process alters

Laplace distribution, but differs from the generalized'® variance, but no other higher order statistics. This

Laplace distribution used in [2], [28]. We also notéllows us to estimate the parameteiin terms of the

that the Bessel K Form corresponds to the symmetriz&§¢ond and fourth order cumulantsyof26]:

Gamma family proposed in [29]. The kurtosis is giver]Lc N £ N2[(N + 1)y — 3(N — 1)m2]

by x = 3 + 3/, thus for small positiver, we obtain "2 = 7y _ 72" = (N —1)(N — 2)(N — 3)

a highly leptokurtic prior. Furthermore, the parameter

7 depends on the frequency of occurrence of particulatherern,; is ani-th sample central moment gf (note

features in the image, like edges, bands, textures [28)at for fixedi all i-th sample central moments must

In Fig. 3 the univariate marginals of the Bessel K Forrbe equal, see Section IlI-B), amd denotes the number
of wavelet coefficients in the subband at scalend
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Figure 2. (a) Empirical joint histogram of a wavelet coeéfiti and
its right neighbour (b) histogram modeled using a multst&iBessel Figure 4. lllustration of "signal of interest’ on the sphtjarior
K Form distribution. fx(x). The ellipsexTCy'x = T2 is extruded to a cylinder, for

visibility. Samplesx outside the cylinder are regarded significant
and represent the detail informatiddon-significantsamples inside the
cylinder only contain weak signal information and are iibMis when
noise is added.
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separated by edges or textures exhibitiagge coef-
(Laplace) ficients. When adding noise to the image, the large
12 regions are dominated by the noise, while the edges
: and textures are still visible through the noise, to some
degree. The noise reduction results from shrinking the

Figure 3. The univariate Bessel K form density, for différemlues NOISy regions towards O while keeping thevanted"

of 7. Special valuer = 1 gives the symmetric Laplace distribution, signal information untouched. This information, called
for - — 400 the Bessel K form approaches the Gaussian density.; ; " ;
Valuesr < 1 result in a high kurtosis (sharp peak). S|gna] .of interest; can be characterized b_y means of

a significance measuyédased on the magnitude of the

considered wavelet coefficient [5]:
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orientationo. An unbiased estimate far is given by S(z) = 1(|z| /0w > T) (11)

A 7. \—1 7. 2

7 =3(ks)” max(0, k2 —03,) 9) whereo,, is the noise standard deviatiofi, is a given
where 02 = (C,)1: is the noise variance [26]. By threshold and(z) is the indicator function. The choice
noting tﬁﬂatE (z) = 7, we estimateC, as: of the thresholdI" will be discussed later. We extend

(11) to vectors by the following generalization:

C,=7"4C, - Cu,)s (10)
o _ _ S(x) =1 (HC;I/QXH > T) (12)
Due to _estimation errors, usually whévi is relatively

small, C, — C,, may not be positive definite. There-yhere /2 is the square root of the positive definite

fore (C), replaces negative eigenvalues ©f with a  atrix C,, and||x|| is the norm ofx. By the positive-
small positive value, such that the resulting matrix is

2
positive definite. We use the maximum likelihood (ML)J€finiteness ofC., HC“)WX = x'Clx = 17
estimate forC,: €, = L Zé\le y;yT. An alternative represents thg equation of an ellipsoid i-dimensional
Expectation-Maximisatio(EM) estimate for: does also SPace. The significance measure (12) then tests whether
exist (see [30], [31]). This estimator has a significantlf IS inside or outside the ellipsoid. This is illustrated in
lower MSE on average and can be equivalently usédd- 4 and Fig. 5.
instead of (9). Because the latter estimate is computa-
tionally much more intensive we prefer to use (9) in this
work.

IV. "SIGNAL OF INTEREST' BASED DENOISING B. Bayesian estimation rule
A. Modeling the signal presence

By observing noise-free wavelet coefficients, we no- We estimate the noise-free signal according to the
tice that there are large regions wismall coefficients, probability that it representsignal of interest, which



is also obtained by marginalizing on

—+00
fy(y) =/0 fy1z(y|2) fz(2)dz,  with
fy1z(ylz) = N (y;0,2Cy + Cu) , (20)

and again numerical integration is used to evaluate
: this expression. To simplify the dependency enin
Figure 5. The posterior probabilify v (s|y;) can be used to detect (19)-(20), it is convenient to exprespx |z (x|z) and

the "signal presence”Léff) Cropout of a noisy wavelet band#{f1)  f,,(y|z) in a new basis wher€, andC,, are diagonal
of the Barbara image.,, = 25%I;) (Righ) ML estimate of the [4] using:

significance §; = arg max, Pg|y (sy;))
2C, +C, = UQ(zA +1,)Q"UT (21)

whereUU” = C,,. Q and the diagonal matriA are
obtained by the diagonalisatidfi—'C,U~" = QTAQ.
By applying the linear transform to the observation

results in the following shrinkage rule: vectorsy;, i.e.v; = (UQ)~ly;, the conditional density

%; = Psry (1y;)y; (13) of v, givenz is given by [4]:
= (1-Psy(0ly;)) y; (14) fviz (vjlz) = N (y;0,2A + 1a) (22)
- (1 _ fYS(yilO)P(HO)) y; (15) In the Appendix, we show that the conditional density
fx(y5) fy|z.5(¥2,0) can also be expressed in this basis as:

where we applied Bayes’ rule in the last step. B

Y, _ _ . —1a-1 —271 \—1
exploiting the additivity of the noise in (3), we have Fizs (Vilz,0) = N (30,7 AT +T7 1) + L)

(23)

_ Since the linear transform matrikUQ)~! only has
0) = —w|0 d 16
Fyis(v[0) /]Rd Ixis(y = wi0)fw(w)dw  (16) to be computed once per subband, independent, of

According to the significance measure (12), the condfis greatly reduces the computational complexity of the
tional density fxs(x0) is given by: proposed method, since the estimation rule (13) using
(22) and (23) only requires the evaluation of Gaussian

Fx)s(x]0) = fx(X)I (HC;I/QXH < T) (17) densities with diagonal covariance matrixs.

P(Ho) Similarly, the probabilityP(S = 0), which glob-
As explained in Section IlI-B,fx(x) is a BKF den- ally estimates the absence of the signal of interest on
sity. Consequently, the convolution in (16) is quitehe whole subband, can be efficiently precomputed per
difficult because closed analytical forms fé¢s(y|0) wavelet band, using this transformation (see Appendix):
do not exist (as far as the authors are aware of). To

1/2
Ive this problem, inalize the denst oo d 2
solve this problem, we marginalize the densfty(x) P(Szo):/ 2(2) <H - T ) d
0 =1

based on the GSM representation in (6) fas(x) = v

[ fx1z(x|2) f2(2)d= (in a practical implementation, = (24)
we use numerical integration for this, see further ifhy case of diagonal covariance matrice€,( =
Section VI). We further remark that ifx s(x|0) is the 0214, C, = 021,) and for the threshold = 1, we
density of a Gaussian Mixture, the above convolutiofing A,; = 02 /02 such that:

involves adding the noise covariance mai@y, to each e ) a/2
component of the mixture. Therefore, we approximate P(S = 0) :/ F2(2) ( Ow ) d

the indicator function in (17) using a Gaussian function: 0 z02 + 02, ’

xT'Cx which can be seen as a weighted average of the ratios of
fxis(x0) = Cofx (%) exp | ———75— (18)

2772 the volumes of the hyperspheres with radiusgsand
: : o : \/z02 + o2 Itis interesting to note that the weighting
},xh:rgggslssi:ndceonnsétii/ionn(iarlmE:i“ozra(tjlggsfi?d;: This resultg nction fz(z), which is the density of a Gamma distri-
P y & bution, relates the probability (S=0) to the frequency
fxiz.5(x]z,0) = N (X;O, ((:C.) "' + (TQCw)‘l)fl of occurrence [25] of image features in the considered
' ( subband: if this frequency is low, the signal of interest

where N(x; 0, C) denotes the Gaussian density evalyVill be absent and (5 =0) will be high (and vice versa).

ated inx. Next, the observation densitfy (y) in (15) In Fig. 6, the conditional densitiegx s(x|0) and



Ix|s(x|1) are shown for a two-dimensional random  xw X1
vector x, corrupted with positively (in 2-D) correlated **
Gaussian noise. In this case, the positive correlation ,
between the noise components and negative correlatio
between the noise-free signal components cause a dia¢’”
onal cut in fx|s(x|1). When there are no correlations
between the noise components and between the noise
free signal components, this cut is ring-shaped. The
contours of the resulting shrinkage function are generally
not elliptical anymore (Fig. 6¢ and Fig. 6d), although
effects of the elliptical contours of the noise probability
density function can still be observed in Fig. 6d. 15 ,',,/%% :
Finally, we remark that equation (13) can also be inter- * Vo
preted as an approximation of Bayes Least Square (BLS ,
or MMSE) estimator for the model in Section Ill with = £
Ex|v,s (xjly;, 1) = y; andExy s (x;]y;,0) =~ 0:
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; ; igure 6. lllustration of the densities, modeling a waveletfficient
In ca_ls_e we are ("?"mOSt) Ce”?‘” that a given Wavelgllpand its right neighbous. (a) Conditional density'x s (x[0) (b)
coefficient vector is purely noise we sele@tas the congitional density fx s (x|1) (c) The shrinkage functiorP(S =
estimate for the noise-free coefficient vector, hendey)y: (d) Isocontours of (c)
Ex|v,s (%;ly;,0) ~ 0. On the other hand, using this
approximation, significant structures like edges are pre-
served and no noise is suppressBgtjy s (x;y;, 1) =
y;. This results in the shrinkage rule (13). In the firs

lace, our intention in this paper is not to apply th
IF\J/IMSE estimator for the intrl?as[éale model diré)crily (agarameters. In the HMT model of Crouse et_al. [11], Ia_lt_er
this offers no notion of "signal presence"). Instead ngtended _by Romberg et al. [13].’ _the marginal densities
will combine the shrinkage rule (13) with the HMTOf the noise-free Wavelgt coefficients are mode!ed as

. : a mixture of two Gaussians. The number of mixture

model in the next Section. o
components is directly related to the number of states:
one mixture component corresponds to each state. To
describe the leptokurtotic behaviour of the noise-free
wavelet coefficients more accurately, a larger number of

It is well known that the wavelet transform does noGaussian mixture components (e.g. 8) may be necessary.
fully decorrelate the wavelet coefficients. By exploitingrhis would increase the number of model parameters
dependencies between these coefficients, improvemesms! subsequently the computational complexity. Another
can be achieved, in denoising [2]-[4], [11] as well as iproblem that arises is: how to estimate the discrete
compression, e.g. the EZW coder of [32]. One way tdensity of the hidden multipliet (i.e. the weights and
deal with these dependencies, is to model the joint steariances of the mixture components). As a general
tistics of the wavelet coefficients in a given wavelet treesolution, the EM algorithm [34] applies, with the dis-
together with their local (spatial) statistics. Howeveldvantage that the algorithm may converge to a non-
empirical joint histograms of multiscale data generallglobal maximum of the likelihood function instead of a
do not tend to have elliptical iso-probability contoursglobal maximum. In [35], nonparametric HMT models,
as assumed for GSM priors. Using high-dimensionabnnecting discrete GSM distributions across states, are
probability densities results in larger covariance masictrained using a Monte Carlo learning algorithm. The
(with size d x d) and more parameters to estimatenumber of states is also learned from the training im-
We need to strike a balance between the number afes. The BLS estimator from [4] can then be used to
model parameters (if too large, the estimation becomdsnoise every wavelet subband. Markov Chain Monte
unreliable) and the number of exploited dependencigdarlo methods can be designed to escape from local
As a solution to this problem, the Hidden Markovmaxima and saddle points of the likelihood function
Tree [11], [33] models Markovian dependencies betwedgee e.g. [36]). However the computational cost is often

?idden state variables of wavelet coefficients that are
n different scales, thereby reducing the number of

V. HIDDEN MARKOV TREE MODEL FOR INTERSCALE
DEPENDENCIES



significant, which makes these methods less practicalAlternatively, it is also possible to use thexactBLS
In our approach, the significance measufés) are estimate (25) for this HMT model:

used as hidden nodes for the HMT model, following (k) 1) (k)

Malfait's idea from [15] for spatial Markov Random X' =Pswpyw,  yw (1|y]- Y )

Fields and further elaborated in [17]. Because this Fvitr ot cin (X(k)| (k) 1)+

only requires two states, independent of the number of XWy 0,50 (3515

Gaussian mixture components, this reduces the compu- Psoiym... y® (O|y§-1>, m,yg_k))
tational complexity while the prior distribution is still o 1 ()
highly kurtotic. We use independent HMT models for Exwpym sw (Xj ly; ,0) (29)

the differentorientations of the DT-CWT. The HMT

structure for the methods of [11], [13] is depicted iﬁ/\{hgre the_ conditional expectapons can b_e_ compl_Jted
Fig. 7a and for our method in Fig. 7b. In the followings'm”ar as in [4], but based on different conditional prior

we will denote the scale of the wavelet transform bQG”S'“eS (eq_uatl_on (19). :
the subscript = 1, ..., K, wherek = K represents the The combination of the spatial GSM model and the

finest scale. The number of coefficients on scalés HMT tree model allows us to capture both spatial and
given byNk. — [, 9%K-1 \wherel is the number of interscale dependencies between wavelet coefficients,
pixels in the original imagé((k) j=1,.. Ny represent which usually improves the denoising performance. For
the noise-free coefficients of a local window at positioinstance, this has been reported for the local contextual

j and scalék. x*) are observations of the random vectoﬁMM in [14], where the LSAI. is used to summarize
(k) J del is ch ized by: the local context around a given wavelet cogff_lme_nt.
X Our HMT. model is characterize 32 However, because the LSAI cannot make a distinction
1) Two possible states for each scatgs( "€ {01} petween signal and noise when noise coefficients are
2) Two continuous observation densities on each Scal'fffjstered, the method from [14] does not deal correctly
f(x®SHE) = 0) and f(x*)|S*) = 1) (Section 1V).

' i with the case of correlated noise.
This results in the overall pdf:

7)) = P(S®I=0) £ (D] = 0)+

P(S®=1)f(xM]s® =1) The Baum-Welch algorithm requires initialization of

The observation densities are assumed independent g state transition probability matrice$’, and the dis-
each scale. tribution oM. An intelligent initialization may provide

3) The state transition probability distributions foifast convergence of the HMT model training [11], [37].
modeling state transitions between different scell®s= Our approach consists of detecting the presence of a
{E,S,’f?n}; signal of interest for each positioh If we use a zero
(k) _ (k+1) _ (k) _ B B cost for the correct decision and equal costs for wrong
€mn = P(S =n[S™ =m), m=0,1, n=0,1 decisions, then we can apply a MAP decision for this

(26) problem [38]:
4) The state distributiom® = {a{¥} for scalek,

A. HMT training initialization

A P(s®=1)

where N Yi)oreo— <
(k) _ J)P(S®=0)
() — p(SH) = p). 27 550 = 0 (30)
on ( ") @ ’ 1Ay pam=g 2 1
The parameters of the complete HMT model can be ) ) )
grouped in a random vector: whereA(y;) = fy|s(y;|S™ =1)/ fv)s(y;|S™" =0) is
oo the likelihood ratio and P(S*) =1)/P(S®*) =0) is the
0 = {r" c, o) M}, prior ratio, calculated using (24). Using the law of total
7®) andC® are estimated once, independently for eac%rObab'“t'eSA(yj) can be written as:
scale (see Section I-Ca(¥), e, k = 2,..., K are Ay,) = fy(y;) = fyis(y;[SH® =0)P(S™ =0)
estimated iteratively using the Baum-Welch algorithm Yi leS(yj|S(k):0>P(S(k):1>

(also known as the Expectation Maximization (EM) _ _ .
algorithm for HMM'’s) [11], [33]. Finally, denoising With f_Y|S(Yj|S(k):O) obtained using equation (16). By
using (13) is quite simple and fast, since the hiddegpunting the number of transitions when passing from
state probabilitied(S*) = 1|yj(‘1), ---,yj(«k)) are already scalek to scalek + 1, we obtain a first reliable estimate
calculated during theupward-downwardsteps of the Of the state transition probability matrix:
Baum-Welch algorithm (see [11]): ZNHl #{Sj(_kﬂ) —nA Sj(/lc) =m}

(k) _ 7=0
~(k 1 k k €, n o
Xg* = Pswpym,. ym (1|YE ), -~-,Y§ )) Y§ ) (28) " Zj‘v:ko #{Sj(k) =m}

(31)



can be found using numerical techniques. However,
for 3 x 3 spatial windows (ord = 9), Monte-Carlo
simulations are needed. To achieve this, we artificially
generate a sufficiently large numbet0(0) of noisy
wavelet subbands of siZ$6 x 256 according to the BKF
prior model with identity covariance matrix and noise co-
variance matrix given by21, with oy, = 0.14+0.2k, k =
0,...,39 (to cover the range of SNR levels where the
algorithm will be used for), witht depending on the

(a) (b) subband number. The threshdltis found minimizing
Figure 7. (a) Hidden Markov Tree structure used in [11], [8] the Bayesian risk numerically, this is repeated for all
The Hiddle”t '\é'gg;r?(\:/l;fe itélégé”zn%fsoﬁgzzg ir”etf:iassgﬁﬁ‘ézb'?gievz | generated subbands. By using the golden section search
?r:s r\:\ilgéirf multiplier (Ii?:al variance) and the s‘?gnificarmgciatedyoptlmlzatlon te(_:hmque’ we obtained _as mean= 2.4,
with the wavelet coefficients. Dotted lines represent spatirrelations, With variance given by).03. Our experiments show that
modeled using the independent overlapping window assompti when small changes to the threshold are made (e.g.
within 10% — 20%), the PSNR and visual performance

o . - .. is nearly not affected. The resulting PSNR curves as
with j' the parent index of the coefficient at position g, tion" of the thresholdl” are similar to the ones
and "#" denotes the cardinality. The state propabilitiepe

M of th | i 4 usi heported in [5] and are therefore omitted here.
ar o the coarsesfc scale are es_tlmate using (24). T Formulas (20) and (24) involve integration over an
outline of our algorithm is given in Algorithm 1.

infinite interval. Instead of approximatingz(z) with
- - - a discrete density and estimating the discrete poipts
Algorithm 1 Algorithm outline from the data, we evaluate these integrals numerically

1. Decompose the image into bands using the DT-CW{ging the extended trapezoidal rule, by selecting an upper

2: for all orientationsdo bound for the integration. This is possible sing(z)
3 for all scales {except the lowpass scali) decays exponentially. Using the exponential sampling
4: Estimate the local model parametet<,, C,, 2y = exp(—3 + Tp),p = 1,..., P, we achieve a good
as explained in Section IlI-C. numerical accuracy even with a limited number of sam-
5: Estimate the initial state probabiliti€y .S =0), ples (typically P = 4).
P(S_:l) using _(_24)' . ... To avoid numerical underflow in theupward-
6: Es_tlmate the initial state transition prObab'I't'e%ownwardalgorithm, used for likelihood computation in
using (31). the HMT model, ascaling procedurdas been proposed
7. end for [33]. When dealing with high-dimensional local priors
8  repeat _ _ (e.g.d > 10) underflow occurs in the the likelihood
9: E-step (pward-downward algorithin estimate

computationsfy|z s(y;lz, 1) and fy|z s(y;lz,0), and

the HMT scaling procedure fails, because of zero input

probabilities. By evaluatindog fy|z(y;|z) rather than

fv|zs(y;]z) and by adding an extra scaling facte'’

to the Gaussian densities, we can avoid this problem.

L i The constantld is chosen experimentally such that the
pected likelihood function numerical values stay within reasonable bounds. The

11:  until convergence evaluated (denormalized) densities will be renormalized

12:  apply equation (28) or (29) to every wavelel, y,matically in the subsequent scaling procedure, dur-

coefficient vector ing the upward/downward steps (see also [33]).
13: end for

14: Reconstruct the image using the scaling coefficients
and the modified wavelet coefficients. VII. RESULTS AND DISCUSSION

A. Experimental results for images with white noise

probabilities for the hidden state variables.
- Upward step: propagatiompward the tree
- Downward step: propagatiodownward the
tree
10: M-step: updatex®), %), to maximize the ex-

The results for this paper are produced using the
VI. IMPLEMENTATION ASPECTS Dual Tree Complex Wavelet transform of [20] with 10-
The thresholdl’ is selected once for all images bytap Q-shift filters. We use overlapping x 3 spatial
minimizing the MSE objective function (or Bayesiarwindows (as in [4]) in order to keep the computional
risk) defined byMSE(T) = E ((x —x)?), similar to overhead low. OnlyP = 4 sampling points are used
[40]. When the dimension is low (d < 3), the solution (Section VI). The reported results for white noise are
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(f) (9) (h) (i) )

Figure 8. Denoising results for lena corrupted with statigrwhite Gaussian noiseo( = 35) [cropped out]. (a) Original image, (b) noisy
image, (c) Crouse et al. (1998), using orthogonal wavektsform PSNR = 28.30dB [11], (d) Luisier et al. (2007), using orthogonal
wavelet transformrPSNR = 28.81dB [7], (¢) Romberg et al. (2000), using DT-CWASNR = 29.20dB [12], (f) Pizurica et al. (2006), using
undecimated wavelet transforlSNR = 29.33dB [5], (g) Sendur et al. (2002), using DT-CWIFSNR = 29.86dB [3], (h) Portilla et al.
(2003), using full steerable pyramiddSNR = 30.07dB [4], (i) Dabov et al. (2007) PSNR = 30.56dB [39], (j) Proposed, using DT-CWT
PSNR = 30.20dB.

obtained using the estimator in equation (28). The HM@lobal optimum. Globally, our combined inter/intrascale
training step is performed on the noisy image and takesethod performs equally well as the BLS-GSM method
in most cases less than 4 iterations before convergenat Portilla (see Table I), but at a lower computational
We found that for images with a high amount of edgeost, since the redundancy factor of the DT-CWT is
and texture information, likeBarbara this number is 4, while the full steerable pyramid transform with 8
usually higher (up to 10-20). The overall impact obrientations has redundancy facfift/3 ~ 18.67. Also,
this large number of iterations is limited, because ththe DT-CWT is generally faster to compute. In Table II,
evaluation of the conditional densitiqsgy;’“)|5(k) =0) the computation times of the BLS-GSM method and
andf(ygk)|s(k) = 1) takes most part of the computatiorfh® Proposed method are compared. Both methods were
time, but fortunately this has to be done only once pdihplemented in C++ with the same level of optimizations
subband. The noise covariance matrix is assumed kno@d Were run on a Pentium 1V 2.4GHz processor. It
to all the algorithms. A visual result fdrenais given C€an be seen that the decrease in redundancy gives a
in Fig. 8. PSNR results are given in Table | and Fig. 1¢Peedup factor o3-4. In Table IlI, the proposed method
is compared to recenmonlocal denoising techniques

- : ) $Fom [41] and [39]. These methods take advantage of
obtained by using the Hidden Markov tree model fro

. . _ . e repetitivity that is present in natural images (which
Section V combined with the spatial model from Secji currently not exploited in our method) and often
i

tion 1V, compared to _only using th? propqsed SPalidie|y excellent results for images with many repetitive
model. The greatest improvement is obtained for t ructures. However, at the time of writing, none of
Lena image (see Fig. 8), where sharp features (e.g.tme

the hat) are preserved very well after denoising. For ﬂ?:%rrelated noise from images. Other recent nonlocal

Barbara image, there is a small loss (. 15dB) for input oy hiqes that are not included in the comparison are
PSNR aroun@0dB. Here, the model assumptions madg 9. [42], [43]

the convergence of the EM-algorithm more difficult (in
terms of the number of EM-iterations), and the algorithm
converges more likely to a local optimum instead of a

se non-local methods can efficiently remove strongly



Table I
COMPARISON OF THE EXECUTION TIMES OF THBBLS-GSM
METHOD AND THE PROPOSED METHODTO ALLOW FOR A FAIR
COMPARISON BOTH METHODS ARE IMPLEMENTED INC++WITH
THE SAME LEVEL OF OPTIMIZATION. REPORTED VALUES ARE THE

11

Table 11l
COMPARISON WITH RECENTNonlocalMETHODS FOR WHITE NOISE
K-SVD-GLOBAL WITH GLOBAL TRAINED DICTIONARY (ELAD ET
AL.) [41], K-SVD-ADAPTIVE WITH ADAPTIVE TRAINED
DICTIONARY (ELAD ET AL.) [41], BM-3D (DABOV ET AL.) [39],

EXECUTION TIMES AVERAGED OVER10 RUNS AND THEIR
STANDARD DEVIATIONS (BETWEEN PARENTHESE$

REPORTED AREPSNRVALUES (AVERAGED OVER50 RUNS FOR
THE PROPSED METHOD ANDBM-3D, AND OVER 5 RUNS FOR
K-SVD) AND PSNRSTANDARD DEVIATIONS (BETWEEN

Input image size PARENTHESES.
Method | 256 x 256 | 512 x 512 N
BLS-GSM| 6.41s (0.035] 25.895 (0.055) T——andard eviation of (e e nose 5
Proposed| 2.02s (0.01s) 6.99s (0.07s) LENA
Proposed 3548 33.81 3259 31.64 30.17 28.6(5.63
(0.02) (0.02) (0.02) (0.03) (0.04) (0.05) (0.05)
. . . .~ K-SVD-global | 3543 3359 32.28 31.16 29.57 27.78 24.44
B. Experimental results for images with correlated noise (0.02) (0.03) (0.03) (0.03) (0.04) (0.07) (0.08)
. . . . K-SVD-adaptive| 35.50 33.70 32.40 31.28 29.66 27.82 24.44
In Fig. 11, visual results are given for colour images (0.01) (0.02) (0.04) (0.02) (0.04) (0.07) (0.06)
corrupted with artificial correlated noise. The noise was BM3D (305553) %5"33) 3(35%13) 3(26034) 3?-05%3) 28((;905)25&3906)
added independently to the three RGB-colour channels: ' ' —REARA ' '
The algorithm was applied in the YCbCr-colour space tO proposed | 34.11 31.84 3023 28.97 27.12 2529 22.65
each colour channel individually. Fig. 11 shows the vi- 002 (002) (002) (0.03) (0.03) (0.04) (0.10)
. . K-SVD-global | 33.36 30.81 29.03 27.71 25.91 24.28 22.05
sual performance of the proposed method in comparison (0.02) (0.02) (0.01) (0.01) (0.02) (0.03) (0.03)
to BLS-GSM of [4]. Our results in this figure are slightly K-SVD-adaptive| 34.83 3269 3111 2982 2776 2541 2219
. . (0.02) (0.02) (0.01) (0.03) (0.03) (0.07) (0.04)
better in terms of PSNR and visually, even though we—gw3p 3538 3345 3205 3093 2013 2705 2353
used a much less redundant representation (with redun- (0.02) (0.03) (0.02) (0.03) (0.04) (0.05 (0.07)
dancy 4 compared td8.67 of the reference method). In
Fig. 12, the algorithm was applied to images captured 05y e
—<— Lenna

with a digital video camera, using a low exposure time. 04l
The images were processed in the RGB-colour space
and the noise covariance matrix was estimated from a
flat region in the image with only noise, for each colour
channel. In Fig. 12 (right), the difference image between
the noisy and denoised image is shown (gray corresponds
with difference 0). Experimentally, we found that the
estimator in equation (29) offers for white noise slightly
worse results than the estimator in (28) (aro0radiB),3 “s 10
but for correlated noise with a highly anisotropic charac-

ter (for e>_<amp_|e Fig. 11b) the eSt'm_ator In equ‘_"‘t'on (z%gure 9. Increase in PSNRKSNR) obtained by using the HMT
usually gives improvements both visually and in PSNRnodel from Section V (using equation (28)) upon the spastireator

In this case, the approximatidﬂx‘y g (Xj|yj, 1) ~ Vi introduced in Section IV, for different input PSNR leveBYNR,;,).
is not accurate. Results are averaged over 50 runs.

—6— Peppers
—~A— Barbara

IPSNR

. . . . )
15 20 25 30 35
PSNRln

VIII. CONCLUSION being competitive with recent state-of-the-art wavelet-
A new method for the removal of correlated noise hdsased denoising methods.
been presented. An intrascale model, based on the Bessel
K Form density, is combined with a Hidden Markov Tree IX. APPENDIX
interscale model by modeling the signal presence in agjst we show that coordinate transforidQ in

given observed random vector. The signal presence ile) also diagonalizes the covariance matrix of the
characterized by a significant measure that quantifies ditional density fy|z.s(y|z,0) for every z, ie.,

relevant_ information in a noisy image and that tak_e_s tl 2C,)L + (Tgcw)_l)— +Cy = UQ((z"'A" +
correlation structure of neighbouring wavelet coefflc:xaentlzﬂ_gI )1 +1,)QTUT;

into account. When used in combination with the Dual- ¢ d '
Tree Complex wavelet transform, we obtain a lower
computational cost and memory requirements, while

2Ct 4 (T2C,,) 7t

= (2C,) '+ (T*U) TUu!

=Uu T 'uTc'uT + 771, U !
_ U—TQ—T(Z—IA—I + T_QId)Q_lU_l

SNote that the MMSE estimator in a redundant representatims d
not necessarily minimize the MSE in the image domain (seetkey
work of Luisier et al. [7])

(32)
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Table |
COMPARISON WITH OTHER METHODS FOR WHITE NOISETHAT USE DIFFERENT MULTIRESOLUTION REPRESENTATIONS
BLS-GSM (FORTILLAET AL.) [4] (FULL STEERABLE PYRAMIDS), BISHRINK (SENDUR ET AL.) [3] (DT-CWT),
PROBSHRINK (PIZURICAET AL.) [5] (UNDECIMATED DWT), MBKF-CURVELET (BOUBCHIR) [31] (CURVELETS) A,
CWT-HMT (ROMBERG ET AL.) [12] (DT-CWT), LCHMM-SI (FAN ET AL.) [14] (UNDECIMATED DWT) B REPORTED
ARE PSNRVALUES AVERAGED OVER 50 RUNS AND PSNRSTANDARD DEVIATIONS (BETWEEN PARENTHESE$.

[ Standard deviation of the white noise [ Standard deviation of the white noise
| 10 15 20 25 35 50 100[ 10 15 20 25 35 50 100
LENA HOUSE

Proposed | 35.48 33.81 3250 3164 3017 2860 2563 | 35.06 3332 32.09 3L11 2956 27.004.87
(0.02) (0.02) (0.02) (0.03) (0.04) (0.05) (0.05(0.04) (0.05) (0.06) (0.06) (0.07) (0.09) (0.12)
BLS-GSM | 3550 3385 3257 31.58 30.05 28.45 25493537 3359 3227 3122 2066 28.01 24.83
(0.02) (0.02) (0.02) (0.03) (0.03) (0.05) (0.0pY0.04) (0.04) (0.05) (0.06) (0.07) (0.08) (0.13)
BiShrink 3529 3358 3232 3135 2984 2822 7518478 3301 31.74 30.74 29.20 27.60 24.49
(0.02) (0.02) (0.03) (0.03) (0.03) (0.04) (0.07Y0.03) (0.05) (0.06) (0.06) (0.08) (0.09) (0.13)
ProbShrink | 35.06 33.23 31.00 30.87 29.33 27.70 248B4.61 32.60 3127 30.18 2856 2696 23.99
(0.02) (0.02) (0.02) (0.03) (0.04) (0.04) (0.0pY0.03) (0.05) (0.05) (0.05) (0.07) (0.08) (0.12)
MBKF-Curvelet| 35.10 33.28 31.06 3094 29.27 - - 3494 3261 3045 28.73 2572 - -
(0.01) (0.02) (0.03) (0.02) (0.21) (0.12) (0.19) (0.40) (0.44) (0.50)
CWT-HMT | 3491 3298 3167 30.72 2923 27.71 25008452 3238 31.06 30.09 2854 2694 23.95
(0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.04(0.03) (0.04) (0.05) (0.05) (0.06) (0.07) (0.09)
[CHMM-SI | 35.00 32.50 31.20 30.10 - - - - E - - -

BARBARA MAN
Proposed | 34.11 31.84 3023 2807 2712 2529 2263356 3148 3009 20.07 27.65 26.253.80
(0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.1pY0.02) (0.02) (0.02) (0.03) (0.02) (0.04) (0.05)
BLS-GSM | 3451 3221 3056 20.30 27.44 7558 2282 | 3363 3154 3015 2913 2/.68 2628 23.81
(0.02) (0.02) (0.03) (0.03) (0.03) (0.04) (0.04(0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.05)
BiShrink 3351 3128 29.76 28.64 27.00 2535 22/B3.2/ 3130 29.97 28.98 275/ 26.16 2361
(0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.04(0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.06)
ProbShrink | 33.83 31.46 29.77 28.46 2647 24.58 22]233.26 31.13 2973 28.73 2732 2594 2353
(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.04(0.01) (0.02) (0.02) (0.02) (0.03) (0.03) (0.05)
MBKF-Curvelet| 34.33 32.20 30.72 2950 27.72 - - [ 3289 3080 2943 2844 2709 - -
(0.02) (0.02) (0.03) (0.05) (0.18) (0.01) (0.02) (0.02) (0.03) (0.02)
CWT-HMT | 33.36 31.09 2954 2822 2606 2432 22[43320 3096 2959 2867 2731 2508 23.69
(0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.0BY0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.05)
[CHMM-SI | 33.10 30.80 29.20 28.00 - - - - - - - - -

A This is our implementation of the method presented in Chiaptef [31], using the EM-estimation of the hyperparametdrthe MBKF
Erior as decribed in [31]. The wrapping-based implemeotatf the curvelet transform from [44] was used.
Because an implementation is currently not publicly awdéaresults for Barbara and Lena are copied from [14].

Lena Barbara Peppers
36 35 35
*
35 3 3 34
33

34 * 33
— — 32 —
3 33 3 33
o x 3 x
5 5 5
L 32 Y 30 Y 31 8
5 5 29 5
Ea1 g g 30 *
3 @ *  Crouse etal.,, 1998 3 Crouse et al., 1998 3 A *  Crouse etal., 1998

O Pizurica et al., 2006 28 « Pizurica et al., 2006 O O Pizurica et al., 2006
30 * +  Portilla et al., 2003 + +  Portilla et al., 2003 29 é * +  Portilla etal., 2003
Proposed 27 Proposed A Proposed
29 K A Romberg et al., 2000 e} A Romberg et al., 2000 28 A Romberg et al., 2000
{  Senduretal., 2002 26 A O Senduretal., 2002 * O Senduretal., 2002
* X Boubchir, 2007 X Boubchir, 2007 X Boubchir, 2007
28 25 * 27
15 20 25 30 15 20 25 30 15 20 25 30
input PSNR [dB] input PSNR [dB] input PSNR [dB]

Figure 10. Results of several recent methods that use afiffenultiresolution representations: Crouse et al. [1ith@monal DWT), Romberg
et al. [12] (DT-CWT), Sendur et al. [3] (DT-CWT), Portillat al. [4] (full steerable pyramids), PiZurica et al. [5] (wwuimated DWT), Boubchir
[31] (curvelets), the proposed method (DT-CWT)
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Figure 11. Denoising results for images with artificial eteted Gaussian noise. (a) Crop-out of the Barbara imageo{wur) (b) Image
with artificial noise ¥(k,1) ~ 1 — exp(—0.1(k? + 12)) + 300 exp(—4000((k — 0.1)? + (I — 0.12)?)), uncorrelated in the RGB-colour
space,PSNR;,, = 18.59dB. (c) BLS-GSM, in the YCbCr-colour spac®SNR,.: = 31.03dB. (d) The proposed technique (using equation
(29)), in the YCbCr-colour spac&SNR,.: = 31.56dB. (e) Crop-out of the boats image (in colour) (f) Image witkif@ial noise ¥ (k,1) ~
I((v? + (0.1u + Tv)?) < 0.1), uncorrelated in the RGB-colour spad@SNR,,, = 18.59dB (g) BLS-GSM, in the YCbCr-colour space,
PSNRowt = 27.22dB. (h) The proposed technique (using equation (29)), in théGiccolour spacePSNR ¢ = 27.37dB.

P(S=0). Using (18), we find:

fx)2,5(x|z,0)
= 75)(1?:();';)) exp (—%XT(TQCU,)_IX)
 [2C,72(27) 2 x((2C) '+ (T2C,) Y)x
 P(S=0]2) -2
(33)
Identification of (33) and (19) leads to:
P(S=0[z) = [(C) " |" (34)

[(2C0) ™! + (12Cw) 1 *
Using (32), this can be further simplified to:

Figure 12. Denoising results for colour images captureth widigital C1aA_1l3 d 9 3
camera, with the noise covariance estimated in a flat redioeft) S—0lz) = }Z A | . T
Noisy image,(Middle) Denoised image, using the proposed methoa)( - |Z) - |z_1A—1 N T_2Id|% - H T2 + 2Ay;

(equation (28))(Right) Difference image i=1
Finally, integration over gives:

_ _ —+o0
where we usedJU” = C,, the SYDU'C,U" = P(S=0) = / P(S=0|2) f2(2)dz
QTAQ andQ”Q = QQT = 1,. This gives: 0
-1 2 —1\—1 +o0 d 2 3
T

(2C.) _j— (2 Cw)—2) —j— C:rw T T :/ f2) (H T2 + zA ) ”

=UQ(z""A +T71;) Q" U +UU 0 balvl Al g2

=U(Q"'A"+T7°1y)7'Q" +1,) UT
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