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Removal of Correlated Noise by Modeling the
Signal of Interest in the Wavelet Domain

Bart Goossens, Aleksandra Pižurica and Wilfried Philips

ABSTRACT

Images, captured with digital imaging devices, often
contain noise. In literature, many algorithms exist for
the removal of white uncorrelated noise, but they usually
fail when applied to images with correlated noise. In this
paper, we design a new denoising method for the removal
of correlated noise, by modeling the significance of the
noise-free wavelet coefficients in a local window using
a new significance measure that defines the "signal of
interest" and that is applicable to correlated noise. We
combine the intrascale model with a Hidden Markov
Tree model to capture the interscale dependencies be-
tween the wavelet coefficients. We propose a denoising
method based on the combined model and a less re-
dundant wavelet transform. We present results that show
that the new method performs as well as the state-of-
the-art wavelet-based methods, while having a lower
computational complexity.

I. I NTRODUCTION

D IGITAL imaging devices often produce noise, orig-
inating from the analogue components (sensors,

amplifiers) in the devices. In many cases, it is desirable
to remove the noise, not only to improve the visual
quality of the images, but also to improve compression
performance. Multiresolution representations like those
based on wavelets have proven to be powerful tools
for image denoising and in literature many techniques
have been proposed for this purpose, like [1]–[7]. It is
often assumed that wavelet coefficients are uncorrelated
and statistically independent, allowing simple and ele-
gant shrinkage rules like soft and hard thresholding. In
practice, noise samples are often correlated (for example
by demosaicking in digital cameras) and these techniques
subsequently fail when applied to images corrupted with
correlated noise.
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A first approach could be the use of a prewhitening
operation for the noise, followed by the wavelet trans-
formation and thresholding. This solution would have
the advantage that the noise components are decorrelated
and an algorithm designed for white noise could be used.
However, the prewhitening operation not only alters
the characteristics of the noise, but also the underlying
signal, thus the advantages diminish [8]. Therefore, the
authors of [8] propose a modifieduniversal threshold,
that depends on the noise variance on every subband of
the wavelet transform. In [2] it is noted that the denoising
performance can be improved by doing joint (vector-
based) thresholding instead of thresholding each coeffi-
cient independently, by looking at correlated coefficients
in the spatial neighbourhood.

In [4], a Bayesian Least Squares estimator with a
Gaussian Scale Mixture prior (BLS-GSM) has been
proposed for this purpose. Local neighbourhoods of
coefficients are modeled as the product of a Gaussian
vector and a hidden scalar multiplier, both indepen-
dent of each other. The noise is treated as multivariate
Gaussian. The least squares, i.e. minimum mean square
error (MMSE) estimator for this model has been derived
and this estimator is the weighted average of the local
linear (Wiener) estimates over all possible values of the
hidden multiplier.

Other authors study interscale models, which char-
acterize the dependencies between wavelet coefficients
at different scales. In [3], a bivariate distribution is
used for a wavelet coefficient and its parent, for the
removal ofwhitenoise. In [9], [10] multiscale stochastic
processes on quadtrees are studied for modeling the joint
distribution of the wavelet coefficients along the quadtree
structure of the wavelet transform.Hidden Markov Tree
(HMT) models [11]–[13] establish Markovian parent-
child relationships amonghidden state variablesrather
than among the coefficients themselves. The prior pa-
rameters are then estimated iteratively by means of the
Baum-Welch algorithm. To overcome the lack of spatial
adaptation, a local contextualHidden Markov Model
(HMM) [14] offers an improvement. An additional hid-
den variable is the local spatial activity, calculated as
the local average energy of the surrounding wavelet
coefficients. Related Markov Random Field models were
used in [15]–[17].
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The work of [5] introduced an approach of estimating
the probability that a given wavelet coefficient represents
a signal of interest given its value and knowing the
marginal distribution of the noise-free coefficients. This
probability was used as a suppression factor for the
wavelet coefficients in the so-called ProbShrink estima-
tor. A locally adaptive version of this approach was also
introduced in [5] which attempts at making use of spatial
correlations that exist between the wavelet coefficients
within the same subband. In this case, the probability of
signal presence was conditioned not only on the coeffi-
cient value but also on a local spatial activity indicator
(LSAI) computed from the surrounding coefficients. This
LSAI in [5] is practically the locally averaged coefficient
magnitude. The rationale behind this approach was: if a
noise-free component is large (small) then the majority
of the neighbouring coefficients within a local window
is also likely to be large (small) because true image dis-
continuities typically result in spatially clustered wavelet
coefficients. This locally adaptive estimator performs
quite well given its low complexity but has an intrinstic
limitation: it is not applicable tocorrelated noise. In
contrast to white noise, correlated noise can result in
spatially clustered large wavelet coefficients, and in this
case the LSAI of [5] cannot make a difference between
the signal and noise.

The main novelty of this work is that we estimate
the probability of signal presence given avector of
surrounding wavelet coefficients, i.e., given astructure
of the local neighbourhood. We are now able to estimate
how likely it is that a given coefficient represents signal
or noise given true correlatedness of wavelet coefficients.
Other important contributions are combining the pro-
posed approach with a Hidden Markov Tree model to
capture not only intra- but also inter-scale coefficient
dependencies and devising a minimum mean squared
error estimator for the proposed statistical model.

This work is on the one hand an improvement and
generalization of the main ideas of [5] where the estima-
tion of probability of signal presence is now improved,
applicable to cases with correlated noise, and where the
estimator is combined with a powerful HMT model.
On the other hand, this work can also be seen as an
improvement and generalization of the HMT approaches
of [11]–[14], where we now employ a better likelihood
model and a better estimation of the involved state
probabilities.

Finally, in relation to GSM based approaches [4], [18],
this work applies GSM models to a novel problem:
the estimation of the probability that a given wavelet
coefficient vector is a signal of interest. The results show
that this alternative estimation approach, combined with
the HMT model and a less redundant transform, offers
some significant savings in complexity (computation

time) without losing the performance.
The organization of this paper is as follows: Section II

introduces some basic concepts used in this paper. Sec-
tion III describes the intrascale statistical model that is
used in the wavelet domain. In Section V, the intrascale
model is combined with the HMT that models interscale
dependencies. Results and a discussion are given in
Section VII. Finally, Section VIII concludes this paper.

II. M ULTISCALE WAVELET ANALYSIS OF THE NOISY

INPUT SIGNAL

A. The spectral noise characteristic

Correlated noise (or coloured noise) is usually spec-
ified by its Energy Spectral Density(ESD). The ESD
describes how the energy (or variance) of a signal is
distributed in frequency space and for 2-D signals it is
defined as:

Φ(k, l) = |F (k, l)|2

whereF (k, l) is the Discrete Fourier Transform (DFT)
of the signal. The DFT would be the ideal choice
of transform, because it completely decorrelates the
noise. However, the DFT cannot recover information on
particular positions in the spatial domain. This makes
the representation less convenient when it comes to
analyzing non-stationary signals.

B. The wavelet transform

To overcome this deficiency, the discrete wavelet
transform has been introduced. The orthogonal discrete
wavelet transform (ODWT) decomposes a signal over
an orthogonal basis of functions that are translates and
dilates of the analyzing wavelet, calledmother wavelet.
This provides a non-uniform partitioning of the time
(space)-frequency plane, which makes it possible to
retrieve information at specific spatial positions. The
wavelet coefficients are samples of bandpass filtered
versions of the input signal, while the scaling coefficients
are samples of lowpass filtered versions. By the linearity
of the transform, signal independent additive noise is
transformed into signal independent additive noise. For
this reason, we will transform our noisy image to the
wavelet domain, estimate the noise-free wavelet coef-
ficients using an additive statistical signal–plus–noise
model and reconstruct the image by applying the inverse
wavelet transform.

Despite the efficiency and the sparsity of the deci-
mated wavelet transform, there are some fundamental
problems [19]: 1) positive and negative oscillations of
the coefficients around singularities, 2) shift variance, 3)
aliasing caused by downsampling operations and 4) poor
directional selectivity. For denoising, the second and
third problems are the most severe, since the local energy
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signature of edges in the transform domain depends
on the edge position and the aliasing creates visually
disturbing artifacts in the reconstructed signal. In the
last decades, many alternative representations have been
developed, including redundant wavelet transforms, the
Dual-Tree Complex Wavelet transform (DT-CWT) [20],
Steerable pyramids [4], the Curvelet transform [21] and
the Contourlet transform [22]. In this work, we will adapt
the DT-CWT, based on its low redundancy (factor 4
for images1), efficiency (by using seperable filters) and
better directional selectivity (6 orientations) compared
to the orthogonal DWT. For a detailed explanation, see
[19].

C. Statistical modeling in the wavelet domain

To build a statistical signal–plus–noise model wavelet
domain model that deals with correlated noise, it is use-
ful to relate the noise ESD to the correlation properties
of noise components of wavelet coefficients. Therefore
we first consider the autocorrelation function of a signal
in the spatial domain, denoted asR(p,q) wherep, q are
two-dimensional vectors representing the spatial position
in the image. Let us first considerspatially stationary
noise. Then the correlation between two pixel intensities
depends only on the difference between their positions:

R(p,q) = R(0,q− p) (1)

The Wiener−Khintchine theorem [23] states that the
autocorrelation functionR(0,q) is the inverse Fourier
transform of the noise ESD. To obtain the autocorrela-
tion function for a specific wavelet subband, at scale
s and orientationo, we apply the wavelet filters and
decimations associated with each decomposition stage
i on the autocorrelation function of the previous stage
i − 1, starting from the autocorrelation function in the
pixel domainR(0)(0,p) as follows:

R(i+1)(p,q) =
∑

k∈Z2

∑

l∈Z2

R(i)(0, 2(q−p)−k+l)h
(i)
k

h
(i)
l

(2)
where h

(i)
k

represents a two-dimensional wavelet filter
kernel (either highpass or lowpass) associated with stage
i. From the decimation factor2 in (2) it is clear that
the wavelet analysis also decomposes the autocorrelation
function and for sufficiently short wavelet filters, the
support of the autocorrelation function becomes smaller
with each scale. This is illustrated in Fig. 1 for the DT-
CWT.2. It can be seen that a small square window (e.g.

1compared to a redundancy factor1+3Ns for an undecimated DWT
with 3 orientations andNs scales.

2Note that, in order to obtain the Oriented DT-CWT from separable
wavelet filters [19], an extra linear transform performed atthe output
of the trees (see [19]) This also has influence on the orientedness of
the autocorrelation functions and is therefore also taken into account
here.

3 × 3) suffices to capture most of the noise correlations
on each scale and orientation.

III. STATISTICAL IMAGE MODEL FOR DENOISING

A. Signal and noise model

In this Section, we present a statistical model for one
subband(s, o) at scales and orientationo of the wavelet
transform. We assume an input image, corrupted with
additive coloured noise. As said before, the linearity
of the wavelet transform yields an equivalent additive
relationship for subband(s, o) in the transform domain:

yj = xj + wj , j = 1, ..., N (3)

where yj , xj and wj are the wavelet coefficients at
spatial positionj (like in raster scanning) of respectively
the observed noisy image, the original image and the
noise. In this notation, wavelet coefficients within a small
neighbourhood of sizeM × M are clustered into a
coefficient vector of sized = M2. The neighbourhoods
are overlapping and are extended periodically at the
image boundaries.wj is assumed to be Gaussian noise
with zero mean and covarianceCw. If the noise ESD
in the spatial domain is known in advance, the noise
covariance matrixCw can be computed directly from the
autocorrelation function for that subband, obtained using
(2). Therefore, we ignore correlations between wavelets
coefficients that are not in the same neighbourhood of
sizeM ×M . If the noise ESD isnot known in advance,
we estimateCw for each band from the observed wavelet
coefficients.

B. Bayesian spatial prior distribution

Recent statistical studies (e.g. [2], [4]) have shown that
distributions of noise-free wavelet coefficients are typi-
cally symmetric around the mode, have a highly kurtotic
non-Gaussian behaviour and exhibit strong correlations,
especially in areas with edges and textures. For many
natural images, the histograms of the wavelet coefficients
reveal elliptical contours, which suggests the use of the
elliptically symmetric family for modeling this behav-
iour. The family ofelliptically symmetricdistributions is
defined by the following class of densities [24]:

fX(x) = kd|Cx|−1/2g[(x − m)TC−1
x (x − m)] (4)

where m is the mean of the distribution,g(u) is a
one dimensional real-valued function, independent of
the number of dimensionsd andkd is a proportionality
constant. For wavelet coefficients, one usually assumes
that m = 0. In this work, we use theBessel K Form
prior [24]–[26], with:

g(u) =
(u

2

)
τ

2 −
d

4

Kτ−d/2(
√

2u), kd =
2(2π)−d/2

Γ(τ)
(5)
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Figure 1. Illustration of the effect of the DT-CWT on a given autocorrelation function in the spatial domain (top-left corner; dark intensities
correspond with negative values, dark gray corresponds with 0 and white intensities correspond with positive values).Right below are the
autocorrelation functions transformed to the DT-CWT domain (the complex magnitude is shown, dark intensities correspond with large
magnitudes). The bottom row contains the real parts of second scale complex wavelets corresponding with each orientation.

where Kl(u) is the modified Bessel function of the
second kind and orderl (see [24]) andΓ(τ) =
∫∞

0 zτ−1e−zdz is the Gamma function. In [25], it has
been shown that the marginals of this distribution fit
well with the observed histograms for a wide variety
of images. This density also has the following Gaussian
Scale Mixture representation [24]:

x
d
= zm + z1/2u (6)

where "
d
=" denotes equality in distribution, u is

GaussianN(0,Cx) andz, called thehidden multiplier
[4], is GammadistributedΓ(α = τ, β = 1):

fZ(z) =
1

Γ(τ)
zτ−1e−z (7)

For the special caseτ = 1, wherez is exponentially
distributed, we obtain the multivariate Laplace distribu-
tion [24], [27] (see Fig. 2). Forτ → ∞, the distribution
approaches the Gaussian distribution (see [24]). Thus,
the Bessel K Form is a generalisation of the multivariate
Laplace distribution, but differs from the generalized
Laplace distribution used in [2], [28]. We also note
that the Bessel K Form corresponds to the symmetrized
Gamma family proposed in [29]. The kurtosis is given
by κ = 3 + 3/τ , thus for small positiveτ , we obtain
a highly leptokurtic prior. Furthermore, the parameter
τ depends on the frequency of occurrence of particular
features in the image, like edges, bands, textures [25].
In Fig. 3 the univariate marginals of the Bessel K Form

density are plotted for different values ofτ .
Other authors have proposed related GSM distribu-

tions like the GSM with a log-normal prior onz [18]
and the GSM with Jeffrey’s prior onz [4]. Among these
priors, the Bessel K Form is the only one that offers
explicit control of the kurtosis, which is advantageous
when modeling wavelet subbands of natural images (see
[25]). In [26] the Bessel K Form prior is compared to
the α-stable prior and Generalized Gaussian Distribu-
tion in modeling observed histograms by means of the
Kullback-Leibler divergence. The authors conclude that
the Bessel K prior performs at least as well as the GGD
for modeling the statistics of wavelet coefficients of a
test set of natural images.

C. Prior parameter estimation

The set of model parameters for the subband at scales
and orientationo is given byΘ = {τ,Cx,Cw}. Adding
a Gaussian process to a Bessel K Form process alters
the variance, but no other higher order statistics. This
allows us to estimate the parameterτ in terms of the
second and fourth order cumulants ofy [26]:

k̂2 =
N

N − 1
m̂2, k̂4 =

N2[(N + 1)m̂4 − 3(N − 1)m̂2
2]

(N − 1)(N − 2)(N − 3)
(8)

wherem̂i is an i-th sample central moment ofy (note
that for fixed i all i-th sample central moments must
be equal, see Section III-B), andN denotes the number
of wavelet coefficients in the subband at scales and
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Figure 2. (a) Empirical joint histogram of a wavelet coefficient and
its right neighbour (b) histogram modeled using a multivariate Bessel
K Form distribution.
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Figure 3. The univariate Bessel K form density, for different values
of τ . Special valueτ = 1 gives the symmetric Laplace distribution,
for τ → +∞ the Bessel K form approaches the Gaussian density.
Valuesτ < 1 result in a high kurtosis (sharp peak).

orientationo. An unbiased estimate forτ is given by

τ̂ = 3(k̂4)
−1 max(0, k̂2 − σ2

w) (9)

where σ2
w = (Cw)11 is the noise variance [26]. By

noting thatE (z) = τ , we estimateCx as:

Ĉx = τ̂−1(Ĉy − Ĉw)+ (10)

Due to estimation errors, usually whenN is relatively
small, Ĉy − Ĉw may not be positive definite. There-
fore (C)+ replaces negative eigenvalues ofC with a
small positive value, such that the resulting matrix is
positive definite. We use the maximum likelihood (ML)
estimate forCy: Ĉy = 1

N

∑N
j=1 yjy

T
j . An alternative

Expectation-Maximisation(EM) estimate for̂τ does also
exist (see [30], [31]). This estimator has a significantly
lower MSE on average and can be equivalently used
instead of (9). Because the latter estimate is computa-
tionally much more intensive we prefer to use (9) in this
work.

IV. "S IGNAL OF INTEREST" BASED DENOISING

A. Modeling the signal presence

By observing noise-free wavelet coefficients, we no-
tice that there are large regions withsmall coefficients,

Figure 4. Illustration of "signal of interest" on the spatial prior
fX(x). The ellipsexT C

−1
w x = T 2 is extruded to a cylinder, for

visibility. Samplesx outside the cylinder are regarded assignificant,
and represent the detail information.Non-significantsamples inside the
cylinder only contain weak signal information and are invisible when
noise is added.

separated by edges or textures exhibitinglarge coef-
ficients. When adding noise to the image, the large
regions are dominated by the noise, while the edges
and textures are still visible through the noise, to some
degree. The noise reduction results from shrinking the
noisy regions towards 0 while keeping the"wanted"
signal information untouched. This information, called
"signal of interest", can be characterized by means of
a significance measure, based on the magnitude of the
considered wavelet coefficient [5]:

S(x) = I(|x|/σw ≥ T ) (11)

whereσw is the noise standard deviation,T is a given
threshold andI(x) is the indicator function. The choice
of the thresholdT will be discussed later. We extend
(11) to vectors by the following generalization:

S(x) = I
(∥

∥

∥
C−1/2

w x

∥

∥

∥
≥ T

)

(12)

whereC
1/2
w is the square root of the positive definite

matrix Cw and ||x|| is the norm ofx. By the positive-

definiteness ofCw,
∥

∥

∥
C

−1/2
w x

∥

∥

∥

2

= xT C−1
w x = T 2

represents the equation of an ellipsoid in ad-dimensional
space. The significance measure (12) then tests whether
x is inside or outside the ellipsoid. This is illustrated in
Fig. 4 and Fig. 5.

B. Bayesian estimation rule

We estimate the noise-free signal according to the
probability that it represents"signal of interest", which
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Figure 5. The posterior probabilityPS|Y(s|yj) can be used to detect
the "signal presence". (Left) Cropout of a noisy wavelet band (HH1)
of the Barbara image (Cw = 252Id) (Right) ML estimate of the
significance (̂sj = arg maxs PS|Y(s|yj))

results in the following shrinkage rule:

x̂j = PS|Y(1|yj)yj (13)

=
(

1 − PS|Y(0|yj)
)

yj (14)

=

(

1 − fY|S(yj |0)P(H0)

fY(yj)

)

yj (15)

where we applied Bayes’ rule in the last step. By
exploiting the additivity of the noise in (3), we have

fY|S(y|0) =

∫

Rd

fX|S(y − w|0)fW(w)dw (16)

According to the significance measure (12), the condi-
tional densityfX|S(x|0) is given by:

fX|S(x|0) =
fX(x)

P(H0)
I
(
∥

∥

∥
C−1/2

w x

∥

∥

∥
< T

)

(17)

As explained in Section III-B,fX(x) is a BKF den-
sity. Consequently, the convolution in (16) is quite
difficult because closed analytical forms forfY|S(y|0)
do not exist (as far as the authors are aware of). To
solve this problem, we marginalize the densityfX(x)
based on the GSM representation in (6) asfX(x) =
∫ +∞

z=0 fX|Z(x|z)fZ(z)dz (in a practical implementation,
we use numerical integration for this, see further in
Section VI). We further remark that iffX|S(x|0) is the
density of a Gaussian Mixture, the above convolution
involves adding the noise covariance matrixCw to each
component of the mixture. Therefore, we approximate
the indicator function in (17) using a Gaussian function:

fX|S(x|0) ≈ C0fX(x) exp

(

−xTC−1
w x

2T 2

)

(18)

whereC0 is a density normalization factor. This results
in a Gaussian conditional prior density onx:

fX|Z,S(x|z, 0) = N
(

x;0,
(

(zCx)−1 + (T 2Cw)−1
)−1
)

(19)
whereN(x;0,C) denotes the Gaussian density evalu-
ated inx. Next, the observation densityfY(y) in (15)

is also obtained by marginalizing onz:

fY(y) =

∫ +∞

0

fY|Z(y|z)fZ(z)dz, with

fY|Z(y|z) = N (y;0, zCu + Cw) , (20)

and again numerical integration is used to evaluate
this expression. To simplify the dependency onz in
(19)-(20), it is convenient to expressfX|Z(x|z) and
fY|Z(y|z) in a new basis whereCx andCw are diagonal
[4] using:

zCx + Cw = UQ(zΛ + Id)Q
T UT (21)

whereUUT = Cw. Q and the diagonal matrixΛ are
obtained by the diagonalisationU−1CxU

−T = QTΛQ.
By applying the linear transform to the observation
vectorsyj , i.e.vj = (UQ)−1yj , the conditional density
of vj given z is given by [4]:

fV|Z (vj |z) = N (y;0, zΛ + Id) (22)

In the Appendix, we show that the conditional density
fY|Z,S(y|z, 0) can also be expressed in this basis as:

fV|Z,S (vj |z, 0) = N
(

y;0, (z−1Λ−1 + T−2Id)
−1 + Id

)

(23)
Since the linear transform matrix(UQ)−1 only has
to be computed once per subband, independent ofz,
this greatly reduces the computational complexity of the
proposed method, since the estimation rule (13) using
(22) and (23) only requires the evaluation of Gaussian
densities with diagonal covariance matrix invj .

Similarly, the probabilityP(S = 0), which glob-
ally estimates the absence of the signal of interest on
the whole subband, can be efficiently precomputed per
wavelet band, using this transformation (see Appendix):

P(S = 0) =

∫ +∞

0

fZ(z)

(

d
∏

i=1

T 2

T 2 + zΛii

)1/2

dz

(24)
In case of diagonal covariance matrices (Cx =
σ2

xId, Cw = σ2
wId) and for the thresholdT = 1, we

find Λii = σ2
x/σ2

w such that:

P(S = 0) =

∫ +∞

0

fZ(z)

(

σ2
w

zσ2
x + σ2

w

)d/2

dz,

which can be seen as a weighted average of the ratios of
the volumes of the hyperspheres with radiusesσw and
√

zσ2
x + σ2

w. It is interesting to note that the weighting
functionfZ(z), which is the density of a Gamma distri-
bution, relates the probabilityP(S =0) to the frequency
of occurrence [25] of image features in the considered
subband: if this frequency is low, the signal of interest
will be absent andP(S=0) will be high (and vice versa).

In Fig. 6, the conditional densitiesfX|S(x|0) and
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fX|S(x|1) are shown for a two-dimensional random
vector x, corrupted with positively (in 2-D) correlated
Gaussian noise. In this case, the positive correlation
between the noise components and negative correlation
between the noise-free signal components cause a diag-
onal cut infX|S(x|1). When there are no correlations
between the noise components and between the noise-
free signal components, this cut is ring-shaped. The
contours of the resulting shrinkage function are generally
not elliptical anymore (Fig. 6c and Fig. 6d), although
effects of the elliptical contours of the noise probability
density function can still be observed in Fig. 6d.

Finally, we remark that equation (13) can also be inter-
preted as an approximation of Bayes Least Square (BLS,
or MMSE) estimator for the model in Section III with
EX|Y,S (xj |yj , 1) ≈ yj andEX|Y,S (xj |yj , 0) ≈ 0:

x̂j = EX|Y (xj |yj)

= PS|Y(1|yj)EX|Y,S (xj |yj , 1)+

PS|Y(0|yj)EX|Y,S (xj |yj , 0) (25)

In case we are (almost) certain that a given wavelet
coefficient vector is purely noise we select0 as the
estimate for the noise-free coefficient vector, hence
EX|Y,S (xj |yj ,0) ≈ 0. On the other hand, using this
approximation, significant structures like edges are pre-
served and no noise is suppressed:EX|Y,S (xj |yj , 1) ≈
yj . This results in the shrinkage rule (13). In the first
place, our intention in this paper is not to apply the
MMSE estimator for the intrascale model directly (as
this offers no notion of "signal presence"). Instead we
will combine the shrinkage rule (13) with the HMT
model in the next Section.

V. H IDDEN MARKOV TREE MODEL FOR INTERSCALE

DEPENDENCIES

It is well known that the wavelet transform does not
fully decorrelate the wavelet coefficients. By exploiting
dependencies between these coefficients, improvements
can be achieved, in denoising [2]–[4], [11] as well as in
compression, e.g. the EZW coder of [32]. One way to
deal with these dependencies, is to model the joint sta-
tistics of the wavelet coefficients in a given wavelet tree,
together with their local (spatial) statistics. However,
empirical joint histograms of multiscale data generally
do not tend to have elliptical iso-probability contours,
as assumed for GSM priors. Using high-dimensional
probability densities results in larger covariance matrices
(with size d × d) and more parameters to estimate.
We need to strike a balance between the number of
model parameters (if too large, the estimation becomes
unreliable) and the number of exploited dependencies.
As a solution to this problem, the Hidden Markov
Tree [11], [33] models Markovian dependencies between
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Figure 6. Illustration of the densities, modeling a waveletcoefficient
x1 and its right neighbourx2. (a) Conditional densityfX|S(x|0) (b)
Conditional densityfX|S(x|1) (c) The shrinkage functionP(S =
1|y)y1 (d) Isocontours of (c)

hidden state variables of wavelet coefficients that are
on different scales, thereby reducing the number of
parameters. In the HMT model of Crouse et al. [11], later
extended by Romberg et al. [13], the marginal densities
of the noise-free wavelet coefficients are modeled as
a mixture of two Gaussians. The number of mixture
components is directly related to the number of states:
one mixture component corresponds to each state. To
describe the leptokurtotic behaviour of the noise-free
wavelet coefficients more accurately, a larger number of
Gaussian mixture components (e.g. 8) may be necessary.
This would increase the number of model parameters
and subsequently the computational complexity. Another
problem that arises is: how to estimate the discrete
density of the hidden multiplierz (i.e. the weights and
variances of the mixture components). As a general
solution, the EM algorithm [34] applies, with the dis-
advantage that the algorithm may converge to a non-
global maximum of the likelihood function instead of a
global maximum. In [35], nonparametric HMT models,
connecting discrete GSM distributions across states, are
trained using a Monte Carlo learning algorithm. The
number of states is also learned from the training im-
ages. The BLS estimator from [4] can then be used to
denoise every wavelet subband. Markov Chain Monte
Carlo methods can be designed to escape from local
maxima and saddle points of the likelihood function
(see e.g. [36]). However the computational cost is often
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significant, which makes these methods less practical.
In our approach, the significance measuresS(x) are

used as hidden nodes for the HMT model, following
Malfait’s idea from [15] for spatial Markov Random
Fields and further elaborated in [17]. Because this
only requires two states, independent of the number of
Gaussian mixture components, this reduces the compu-
tational complexity while the prior distribution is still
highly kurtotic. We use independent HMT models for
the different orientations of the DT-CWT. The HMT
structure for the methods of [11], [13] is depicted in
Fig. 7a and for our method in Fig. 7b. In the following,
we will denote the scale of the wavelet transform by
the subscriptk = 1, ..., K, wherek = K represents the
finest scale. The number of coefficients on scalek is
given by Nk = L 2k−K−1, whereL is the number of
pixels in the original image.x(k)

j , j = 1, ..., Nk represent
the noise-free coefficients of a local window at position
j and scalek. x(k)

j are observations of the random vector
x(k). Our HMT model is characterized by:

1) Two possible states for each scalek: S(k) ∈ {0, 1}.
2) Two continuous observation densities on each scale:

f(x(k)|S(k) = 0) and f(x(k)|S(k) = 1) (Section IV).
This results in the overall pdf:

f(x(k)) = P(S(k) =0)f(x(k)|S(k) = 0)+

P(S(k) =1)f(x(k)|S(k) = 1)

The observation densities are assumed independent for
each scale.

3) The state transition probability distributions for
modeling state transitions between different scalesǫ(k) =

{ǫ(k)
m,n}:

ǫ(k)
m,n = P(S(k+1) = n|S(k) = m), m = 0, 1, n = 0, 1

(26)
4) The state distributionα(k) = {α(k)

n } for scalek,
where

α(k)
n = P(S(k) = n). (27)

The parameters of the complete HMT model can be
grouped in a random vector:

Θ = {τ (k),C(k)
x , α(k), ǫ(k)}.

τ (k) andC
(k)
x are estimated once, independently for each

scale (see Section III-C).α(k), ǫ(k), k = 2, ..., K are
estimated iteratively using the Baum-Welch algorithm
(also known as the Expectation Maximization (EM)
algorithm for HMM’s) [11], [33]. Finally, denoising
using (13) is quite simple and fast, since the hidden
state probabilitiesP(S(k) = 1|y(1)

j , ...,y
(k)
j ) are already

calculated during theupward-downwardsteps of the
Baum-Welch algorithm (see [11]):

x̂
(k)
j = PS(k)|Y(1),...,Y(k)

(

1|y(1)
j , ...,y

(k)
j

)

y
(k)
j (28)

Alternatively, it is also possible to use theexact BLS
estimate (25) for this HMT model:

x̂
(k)
j = PS(k)|Y(1),...,Y(k)

(

1|y(1)
j , ...,y

(k)
j

)

EX(k)|Y(k),S(k)

(

x
(k)
j |y(k)

j , 1
)

+

PS(k)|Y(1),...,Y(k)

(

0|y(1)
j , ...,y

(k)
j

)

EX(k)|Y(k),S(k)

(

x
(k)
j |y(k)

j , 0
)

(29)

where the conditional expectations can be computed
similar as in [4], but based on different conditional prior
densities (equation (19)).

The combination of the spatial GSM model and the
HMT tree model allows us to capture both spatial and
interscale dependencies between wavelet coefficients,
which usually improves the denoising performance. For
instance, this has been reported for the local contextual
HMM in [14], where the LSAI is used to summarize
the local context around a given wavelet coefficient.
However, because the LSAI cannot make a distinction
between signal and noise when noise coefficients are
clustered, the method from [14] does not deal correctly
with the case of correlated noise.

A. HMT training initialization

The Baum-Welch algorithm requires initialization of
the state transition probability matricesǫ

(k)
m,n and the dis-

tribution α(1). An intelligent initialization may provide
fast convergence of the HMT model training [11], [37].
Our approach consists of detecting the presence of a
signal of interest for each positionj. If we use a zero
cost for the correct decision and equal costs for wrong
decisions, then we can apply a MAP decision for this
problem [38]:

Ŝ
(k)
j =







0 λ(yj)
P(S(k)=1)
P(S(k)=0)

< 1

1 λ(yj)
P(S(k)=1)
P(S(k)=0)

≥ 1
(30)

whereλ(yj) = fY|S(yj |S(k) =1)/fY|S(yj |S(k) =0) is
the likelihood ratio andP(S(k) =1)/P(S(k) =0) is the
prior ratio, calculated using (24). Using the law of total
probabilitiesλ(yj) can be written as:

λ(yj) =
fY(yj) − fY|S(yj |S(k) =0)P(S(k) =0)

fY|S(yj |S(k) =0)P(S(k) =1)

with fY|S(yj |S(k) =0) obtained using equation (16). By
counting the number of transitions when passing from
scalek to scalek +1, we obtain a first reliable estimate
of the state transition probability matrix:

ǫ(k)
m,n =

∑Nk+1

j=0 #{S(k+1)
j = n ∧ S

(k)
j′ = m}

∑Nk

j=0 #{S(k)
j = m}

(31)
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(a) (b)

Figure 7. (a) Hidden Markov Tree structure used in [11], [13](b)
The Hidden Markov Tree structure proposed in this paper. black nodes
are wavelet coefficients,z-nodes ands-nodes represent respectively
the hidden multiplier (local variance) and the significanceassociated
with the wavelet coefficients. Dotted lines represent spatial correlations,
modeled using the independent overlapping window assumption.

with j′ the parent index of the coefficient at positionj
and "#" denotes the cardinality. The state propabilities
α(1) of the coarsest scale are estimated using (24). The
outline of our algorithm is given in Algorithm 1.

Algorithm 1 Algorithm outline
1: Decompose the image into bands using the DT-CWT
2: for all orientationsdo
3: for all scales {except the lowpass scale}do
4: Estimate the local model parametersτ,Cx,Cw

as explained in Section III-C.
5: Estimate the initial state probabilitiesP(S =0),

P(S =1) using (24).
6: Estimate the initial state transition probabilities

using (31).
7: end for
8: repeat
9: E-step (upward-downward algorithm): estimate

probabilities for the hidden state variables.
- Upward step: propagationupward the tree
- Downward step: propagationdownward the
tree

10: M-step: updateα(k), ǫ(k), to maximize the ex-
pected likelihood function

11: until convergence
12: apply equation (28) or (29) to every wavelet

coefficient vector
13: end for
14: Reconstruct the image using the scaling coefficients

and the modified wavelet coefficients.

VI. I MPLEMENTATION ASPECTS

The thresholdT is selected once for all images by
minimizing the MSE objective function (or Bayesian
risk) defined byMSE(T ) = E

(

(x̂ − x)2
)

, similar to
[40]. When the dimensiond is low (d < 3), the solution

can be found using numerical techniques. However,
for 3 × 3 spatial windows (ord = 9), Monte-Carlo
simulations are needed. To achieve this, we artificially
generate a sufficiently large number (4000) of noisy
wavelet subbands of size256×256 according to the BKF
prior model with identity covariance matrix and noise co-
variance matrix given byσ2

kI, with σk = 0.1+0.2k, k =
0, ..., 39 (to cover the range of SNR levels where the
algorithm will be used for), withk depending on the
subband number. The thresholdT is found minimizing
the Bayesian risk numerically, this is repeated for all
generated subbands. By using the golden section search
optimization technique, we obtained as meanT = 2.4,
with variance given by0.03. Our experiments show that
when small changes to the threshold are made (e.g.
within 10% − 20%), the PSNR and visual performance
is nearly not affected. The resulting PSNR curves as
function of the thresholdT are similar to the ones
reported in [5] and are therefore omitted here.

Formulas (20) and (24) involve integration over an
infinite interval. Instead of approximatingfZ(z) with
a discrete density and estimating the discrete pointszp

from the data, we evaluate these integrals numerically
using the extended trapezoidal rule, by selecting an upper
bound for the integration. This is possible sincefZ(z)
decays exponentially. Using the exponential sampling
zp = exp(−3 + 7p), p = 1, ..., P , we achieve a good
numerical accuracy even with a limited number of sam-
ples (typicallyP = 4).

To avoid numerical underflow in theupward-
downwardalgorithm, used for likelihood computation in
the HMT model, ascaling procedurehas been proposed
[33]. When dealing with high-dimensional local priors
(e.g. d ≥ 10) underflow occurs in the the likelihood
computationsfY|Z,S(yj |z, 1) and fY|Z,S(yj |z, 0), and
the HMT scaling procedure fails, because of zero input
probabilities. By evaluatinglog fY|Z(yj |z) rather than
fY|Z,S(yj |z) and by adding an extra scaling factore4d

to the Gaussian densities, we can avoid this problem.
The constant4d is chosen experimentally such that the
numerical values stay within reasonable bounds. The
evaluated (denormalized) densities will be renormalized
automatically in the subsequent scaling procedure, dur-
ing the upward/downward steps (see also [33]).

VII. R ESULTS AND DISCUSSION

A. Experimental results for images with white noise

The results for this paper are produced using the
Dual Tree Complex Wavelet transform of [20] with 10-
tap Q-shift filters. We use overlapping3 × 3 spatial
windows (as in [4]) in order to keep the computional
overhead low. OnlyP = 4 sampling points are used
(Section VI). The reported results for white noise are
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Denoising results for lena corrupted with stationary white Gaussian noise (σ = 35) [cropped out]. (a) Original image, (b) noisy
image, (c) Crouse et al. (1998), using orthogonal wavelet transformPSNR = 28.30dB [11], (d) Luisier et al. (2007), using orthogonal
wavelet transformPSNR = 28.81dB [7], (e) Romberg et al. (2000), using DT-CWTPSNR = 29.20dB [12], (f) Pižurica et al. (2006), using
undecimated wavelet transformPSNR = 29.33dB [5], (g) Şendur et al. (2002), using DT-CWTPSNR = 29.86dB [3], (h) Portilla et al.
(2003), using full steerable pyramidsPSNR = 30.07dB [4], (i) Dabov et al. (2007),PSNR = 30.56dB [39], (j) Proposed, using DT-CWT
PSNR = 30.20dB.

obtained using the estimator in equation (28). The HMT
training step is performed on the noisy image and takes
in most cases less than 4 iterations before convergence.
We found that for images with a high amount of edge
and texture information, likeBarbara, this number is
usually higher (up to 10-20). The overall impact of
this large number of iterations is limited, because the
evaluation of the conditional densitiesf(y

(k)
j |S(k) = 0)

andf(y
(k)
j |S(k) = 1) takes most part of the computation

time, but fortunately this has to be done only once per
subband. The noise covariance matrix is assumed known
to all the algorithms. A visual result forLena is given
in Fig. 8. PSNR results are given in Table I and Fig. 10.

Fig. 9 shows the improvement in PSNR performance
obtained by using the Hidden Markov tree model from
Section V combined with the spatial model from Sec-
tion IV, compared to only using the proposed spatial
model. The greatest improvement is obtained for the
Lena image (see Fig. 8), where sharp features (e.g. in
the hat) are preserved very well after denoising. For the
Barbara image, there is a small loss (< 0.15dB) for input
PSNR around20dB. Here, the model assumptions made
the convergence of the EM-algorithm more difficult (in
terms of the number of EM-iterations), and the algorithm
converges more likely to a local optimum instead of a

global optimum. Globally, our combined inter/intrascale
method performs equally well as the BLS-GSM method
of Portilla (see Table I), but at a lower computational
cost, since the redundancy factor of the DT-CWT is
4, while the full steerable pyramid transform with 8
orientations has redundancy factor56/3 ≈ 18.67. Also,
the DT-CWT is generally faster to compute. In Table II,
the computation times of the BLS-GSM method and
the proposed method are compared. Both methods were
implemented in C++ with the same level of optimizations
and were run on a Pentium IV 2.4GHz processor. It
can be seen that the decrease in redundancy gives a
speedup factor of3-4. In Table III, the proposed method
is compared to recentnonlocal denoising techniques
from [41] and [39]. These methods take advantage of
the repetitivity that is present in natural images (which
is currently not exploited in our method) and often
yield excellent results for images with many repetitive
structures. However, at the time of writing, none of
these non-local methods can efficiently remove strongly
correlated noise from images. Other recent nonlocal
techniques that are not included in the comparison are
e.g. [42], [43].
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Table II
COMPARISON OF THE EXECUTION TIMES OF THEBLS-GSM

METHOD AND THE PROPOSED METHOD. TO ALLOW FOR A FAIR

COMPARISON, BOTH METHODS ARE IMPLEMENTED INC++ WITH

THE SAME LEVEL OF OPTIMIZATION. REPORTED VALUES ARE THE

EXECUTION TIMES AVERAGED OVER10 RUNS AND THEIR
STANDARD DEVIATIONS (BETWEEN PARENTHESES)

Input image size
Method 256× 256 512× 512

BLS-GSM 6.41s (0.03s) 25.89s (0.05s)
Proposed 2.02s (0.01s) 6.99s (0.07s)

B. Experimental results for images with correlated noise

In Fig. 11, visual results are given for colour images
corrupted with artificial correlated noise. The noise was
added independently to the three RGB-colour channels.
The algorithm was applied in the YCbCr-colour space to
each colour channel individually. Fig. 11 shows the vi-
sual performance of the proposed method in comparison
to BLS-GSM of [4]. Our results in this figure are slightly
better in terms of PSNR and visually, even though we
used a much less redundant representation (with redun-
dancy 4 compared to18.67 of the reference method). In
Fig. 12, the algorithm was applied to images captured
with a digital video camera, using a low exposure time.
The images were processed in the RGB-colour space
and the noise covariance matrix was estimated from a
flat region in the image with only noise, for each colour
channel. In Fig. 12 (right), the difference image between
the noisy and denoised image is shown (gray corresponds
with difference 0). Experimentally, we found that the
estimator in equation (29) offers for white noise slightly
worse results than the estimator in (28) (around0.3dB),3

but for correlated noise with a highly anisotropic charac-
ter (for example Fig. 11b) the estimator in equation (29)
usually gives improvements both visually and in PSNR.
In this case, the approximationEX|Y,S (xj |yj , 1) ≈ yj

is not accurate.

VIII. C ONCLUSION

A new method for the removal of correlated noise has
been presented. An intrascale model, based on the Bessel
K Form density, is combined with a Hidden Markov Tree
interscale model by modeling the signal presence in a
given observed random vector. The signal presence is
characterized by a significant measure that quantifies the
relevant information in a noisy image and that takes the
correlation structure of neighbouring wavelet coefficients
into account. When used in combination with the Dual-
Tree Complex wavelet transform, we obtain a lower
computational cost and memory requirements, while

3Note that the MMSE estimator in a redundant representation does
not necessarily minimize the MSE in the image domain (see e.g. the
work of Luisier et al. [7])

Table III
COMPARISON WITH RECENTnonlocalMETHODS FOR WHITE NOISE:
K-SVD-GLOBAL WITH GLOBAL TRAINED DICTIONARY (ELAD ET

AL .) [41], K-SVD-ADAPTIVE WITH ADAPTIVE TRAINED

DICTIONARY (ELAD ET AL .) [41], BM-3D (DABOV ET AL .) [39],
REPORTED AREPSNRVALUES (AVERAGED OVER 50 RUNS FOR

THE PROPSED METHOD ANDBM-3D, AND OVER 5 RUNS FOR

K-SVD) AND PSNRSTANDARD DEVIATIONS (BETWEEN

PARENTHESES).

Standard deviation of the white noise
10 15 20 25 35 50 100

LENA

Proposed 35.48 33.81 32.59 31.64 30.17 28.6025.63
(0.02) (0.02) (0.02) (0.03) (0.04) (0.05) (0.05)

K-SVD-global 35.43 33.59 32.28 31.16 29.57 27.78 24.44
(0.02) (0.03) (0.03) (0.03) (0.04) (0.07) (0.08)

K-SVD-adaptive 35.50 33.70 32.40 31.28 29.66 27.82 24.44
(0.01) (0.02) (0.04) (0.02) (0.04) (0.07) (0.06)

BM3D 35.89 34.23 33.01 32.04 30.52 28.79 25.49
(0.02) (0.02) (0.03) (0.04) (0.03) (0.05) (0.06)

BARBARA
Proposed 34.11 31.84 30.23 28.97 27.12 25.29 22.65

(0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.10)
K-SVD-global 33.36 30.81 29.03 27.71 25.91 24.28 22.05

(0.02) (0.02) (0.01) (0.01) (0.02) (0.03) (0.03)
K-SVD-adaptive 34.83 32.69 31.11 29.82 27.76 25.41 22.19

(0.02) (0.02) (0.01) (0.03) (0.03) (0.07) (0.04)
BM3D 35.38 33.45 32.05 30.93 29.13 27.25 23.53

(0.02) (0.03) (0.02) (0.03) (0.04) (0.05) (0.07)
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Figure 9. Increase in PSNR (IPSNR) obtained by using the HMT
model from Section V (using equation (28)) upon the spatial estimator
introduced in Section IV, for different input PSNR levels (PSNRin).
Results are averaged over 50 runs.

being competitive with recent state-of-the-art wavelet-
based denoising methods.

IX. A PPENDIX

First we show that coordinate transformUQ in
(21) also diagonalizes the covariance matrix of the
conditional densityfY|Z,S(y|z, 0) for every z, i.e.,
(

(zCx)−1 + (T 2Cw)−1
)−1

+ Cw = UQ((z−1Λ−1 +
T−2Id)

−1 + Id)Q
TUT :

zC−1
x + (T 2Cw)−1

= (zCx)−1 + (T 2U)−T U−1

= U−T (z−1UT C−1
x UT + T−2Id)U

−1

= U−TQ−T (z−1Λ−1 + T−2Id)Q
−1U−1 (32)
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Table I
COMPARISON WITH OTHER METHODS FOR WHITE NOISE, THAT USE DIFFERENT MULTIRESOLUTION REPRESENTATIONS:

BLS-GSM (PORTILLA ET AL .) [4] (FULL STEERABLE PYRAMIDS), BISHRINK (ŞENDUR ET AL.) [3] (DT-CWT),
PROBSHRINK (PIŽURICA ET AL .) [5] (UNDECIMATED DWT), MBKF-CURVELET (BOUBCHIR) [31] (CURVELETS) A ,

CWT-HMT (ROMBERG ET AL.) [12] (DT-CWT), LCHMM-SI (FAN ET AL .) [14] (UNDECIMATED DWT) B REPORTED
ARE PSNRVALUES AVERAGED OVER 50 RUNS AND PSNRSTANDARD DEVIATIONS (BETWEEN PARENTHESES).

Standard deviation of the white noise Standard deviation of the white noise
10 15 20 25 35 50 100 10 15 20 25 35 50 100

LENA HOUSE
Proposed 35.48 33.81 32.59 31.64 30.17 28.60 25.63 35.06 33.32 32.09 31.11 29.56 27.9624.87

(0.02) (0.02) (0.02) (0.03) (0.04) (0.05) (0.05)(0.04) (0.05) (0.06) (0.06) (0.07) (0.09) (0.12)
BLS-GSM 35.59 33.85 32.57 31.58 30.05 28.45 25.4935.37 33.59 32.27 31.22 29.66 28.01 24.83

(0.02) (0.02) (0.02) (0.03) (0.03) (0.05) (0.06)(0.04) (0.04) (0.05) (0.06) (0.07) (0.08) (0.13)
BiShrink 35.29 33.58 32.32 31.35 29.84 28.22 25.1634.78 33.01 31.74 30.74 29.20 27.60 24.49

(0.02) (0.02) (0.03) (0.03) (0.03) (0.04) (0.07)(0.03) (0.05) (0.06) (0.06) (0.08) (0.09) (0.13)
ProbShrink 35.06 33.23 31.90 30.87 29.33 27.70 24.8134.61 32.69 31.27 30.18 28.56 26.96 23.99

(0.02) (0.02) (0.02) (0.03) (0.04) (0.04) (0.06)(0.03) (0.05) (0.05) (0.05) (0.07) (0.08) (0.12)
MBKF-Curvelet 35.10 33.28 31.96 30.94 29.27 - - 34.94 32.61 30.45 28.73 25.72 - -

(0.01) (0.02) (0.03) (0.02) (0.21) (0.12) (0.19) (0.40) (0.44) (0.50)
CWT-HMT 34.91 32.98 31.67 30.72 29.23 27.71 25.0134.52 32.38 31.06 30.09 28.54 26.94 23.95

(0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.04)(0.03) (0.04) (0.05) (0.05) (0.06) (0.07) (0.09)
LCHMM-SI 35.00 32.50 31.20 30.10 - - - - - - - - -

BARBARA MAN
Proposed 34.11 31.84 30.23 28.97 27.12 25.29 22.6533.56 31.48 30.09 29.07 27.65 26.2523.89

(0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.10)(0.02) (0.02) (0.02) (0.03) (0.02) (0.04) (0.05)
BLS-GSM 34.51 32.21 30.56 29.30 27.44 25.58 22.82 33.63 31.54 30.15 29.13 27.68 26.28 23.81

(0.02) (0.02) (0.03) (0.03) (0.03) (0.04) (0.04)(0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.05)
BiShrink 33.51 31.28 29.76 28.64 27.00 25.35 22.7133.27 31.30 29.97 28.98 27.57 26.16 23.61

(0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.04)(0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.06)
ProbShrink 33.83 31.46 29.77 28.46 26.47 24.58 22.2333.26 31.13 29.73 28.73 27.32 25.94 23.53

(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.04)(0.01) (0.02) (0.02) (0.02) (0.03) (0.03) (0.05)
MBKF-Curvelet 34.33 32.20 30.72 29.59 27.72 - - 32.89 30.80 29.43 28.44 27.09 - -

(0.02) (0.02) (0.03) (0.05) (0.18) (0.01) (0.02) (0.02) (0.03) (0.02)
CWT-HMT 33.36 31.09 29.54 28.22 26.06 24.32 22.4333.20 30.96 29.59 28.67 27.31 25.98 23.69

(0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)(0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.05)
LCHMM-SI 33.10 30.80 29.20 28.00 - - - - - - - - - -

A This is our implementation of the method presented in Chapter 6 of [31], using the EM-estimation of the hyperparameters of the MBKF
prior as decribed in [31]. The wrapping-based implementation of the curvelet transform from [44] was used.
B Because an implementation is currently not publicly available, results for Barbara and Lena are copied from [14].
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Figure 10. Results of several recent methods that use different multiresolution representations: Crouse et al. [11] (orthogonal DWT), Romberg
et al. [12] (DT-CWT), Şendur et al. [3] (DT-CWT), Portilla et al. [4] (full steerable pyramids), Pižurica et al. [5] (undecimated DWT), Boubchir
[31] (curvelets), the proposed method (DT-CWT)



13

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Denoising results for images with artificial correlated Gaussian noise. (a) Crop-out of the Barbara image (incolour) (b) Image
with artificial noiseΨ(k, l) ∼ 1 − exp(−0.1(k2 + l2)) + 300 exp(−4000((k − 0.1)2 + (l − 0.12)2)), uncorrelated in the RGB-colour
space,PSNRin = 18.59dB. (c) BLS-GSM, in the YCbCr-colour space,PSNRout = 31.03dB. (d) The proposed technique (using equation
(29)), in the YCbCr-colour space,PSNRout = 31.56dB. (e) Crop-out of the boats image (in colour) (f) Image with artificial noiseΨ(k, l) ∼
I((v2 + (0.1u + 7v)2) < 0.1), uncorrelated in the RGB-colour space,PSNRin = 18.59dB (g) BLS-GSM, in the YCbCr-colour space,
PSNRout = 27.22dB. (h) The proposed technique (using equation (29)), in the YCbCr-colour space,PSNRout = 27.37dB.

Figure 12. Denoising results for colour images captured with a digital
camera, with the noise covariance estimated in a flat region.(Left)
Noisy image,(Middle) Denoised image, using the proposed method
(equation (28)),(Right) Difference image

where we usedUUT = Cw, the SVDU−1CxU
−T =

QTΛQ andQTQ = QQT = Id. This gives:
(

(zCx)−1 + (T 2Cw)−1
)−1

+ Cw

= UQ(z−1Λ−1 + T−2Id)
−1QTUT + UUT

= U
(

Q(z−1Λ−1 + T−2Id)
−1QT + Id

)

UT

= UQ((z−1Λ−1 + T−2Id)
−1 + Id)Q

TUT

Next we derive an expression for the probability

P(S =0). Using (18), we find:

fX|Z,S(x|z, 0)

=
fX|Z(x|z)

P(S =0|z)
exp

(

−1

2
xT (T 2Cw)−1x

)

=
|zCx|−

1
2 (2π)−

d

2

P(S =0|z)
exp

(

xT
(

(zCx)−1+(T 2Cw)−1
)

x

−2

)

(33)

Identification of (33) and (19) leads to:

P(S =0|z) =

∣

∣(zCx)−1
∣

∣

1
2

|(zCx)−1 + (T 2CW )−1|
1
2

(34)

Using (32), this can be further simplified to:

P(S =0|z) =

∣

∣z−1Λ−1
∣

∣

1
2

|z−1Λ−1 + T−2Id|
1
2

=

(

d
∏

i=1

T 2

T 2 + zΛii

)

1
2

Finally, integration overz gives:

P(S=0) =

∫ +∞

0

P(S =0|z)fZ(z)dz

=

∫ +∞

0

fZ(z)

(

d
∏

i=1

T 2

T 2 + zΛii

)

1
2

dz

REFERENCES

[1] D. L Donoho, “De-noising by soft-thresholding,”IEEE Trans.
Inform. Theory, vol. 41, pp. 613–627, May 1995.



14

[2] S. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet
thresholding with context modeling for image denoising,”IEEE
Trans. Image Processing, vol. 9, pp. 1522–1531, 2000.
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