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Abstract— Octonion based signal representations attract the
attention for multichannel signal processing due to their property
of treating multiple channels in a holistic manner. This leads to
better preservation of the correlation among different channels of
a given signal. The aim of this article is to compare two different
sparse coding techniques for octonion valued signals by using a
unified octonion algebra approach.

1 Introduction
Sparse representation, i.e. representation of a signal as a lin-
ear combination of only few elements from a given dictio-
nary of prototype functions called atoms [1, 2], has been un-
derlying most of the recent developments in signal and image
processing [3]. Most methods usually treat multidimensional
signals as long vectors, by concatenating all channels into a
single column vector, regardless of the number of channels that
the signal has. In this way also multispectral and hyperspectral
images can be treated although the interrelationship between
the spectral channels is neglected [4, 5].

The interchannel dependencies can be exploited through a
tensor representation model [6, 7]. Another idea of treating all
channels simultaneously lies in the combination of the sparse
representation model with a hypercomplex algebra representa-
tion of multichannel data. Since the quaternion model is not
applicable to signals and images with more than three spectral
bands, the octonion model has been introduced [4, 8]. The main
goal of the hypercomplex algebra approach is to better preserve
the interrelationship and channel dependencies [8]. The key
idea is to represent multichannel signals and images as octo-
nion vectors and matrices by assigning different channels to
different imaginary units of the octonion algebra (Fig. 1). In
this way different channels can be treated simultaneously and
the interchannel dependencies can be better preserved.

In this paper we address the sparse coding problem for octo-
nion valued signals. First, we consider the `0-minimization
problem, where the exact number of nonzero elements of the
code vector is prescribed and we show that it can be solved by
using the octonion version of the OMP algorithm. Second, we
show that the `1 minimization problem over octonions can be
represented as a real Second-Order Cone Programming (SOCP)
problem [9]. Both problems will be represented in a unified
way by introducing suitable matrix operators.

2 Octonion sparse representation
Two main representatives of the hypercomplex algebras are
Clifford algebras and Cayley-Dickson algebras [10]. The lat-
ter ones are obtained by doubling a smaller algebra and adding

y1 7→ e1
y2 7→ e2

y3 7→ e3
y4 7→ e4

y5 7→ e5
y6 7→ e6

y7 7→ e7

ẏ

ẏ = 0 + y1e1 + · · ·+ y7e7, ẏ ∈ Om×1, yi ∈ Rm×1

Figure 1: Landsat 7 image patch can be represented as an octonion vector ẏ,
where each spectral channel y1, . . . ,y7, is assigned to one of the imaginary
units e1, . . . , e7 of the octonion algebra O.

an additional imaginary unit. Starting with the real numbers R,
higher dimensional algebras are constructed as:

C = R⊕ iR → H = C⊕ jC → O = H⊕ `H,

where i, j, ` are imaginary units. Note that C and H are special
cases of the octonion algebra.
Let ẏ be an m-dimensional multichannel signal with no more
than seven spectral channels as in Fig. 1. Then it can be written
in the form of an octonion vector ẏ ∈ Om×1 as

ẏ = 0 + y1e1 + · · ·+ y7e7, yi ∈ Rm×1. (1)

2.1 Octonion sparse coding problem
The octonion sparse coding aims to represent a given signal
ẏ ∈ Om×1 as a linear combination of only a few elements
from a redundant set Ḋ = {ḋk}mk=1 ∈ Om×n which can be
represented as Ḋ = D0 + D1e1 + · · · + D7e7. We will refer
to Ḋ as a dictionary whose columns ḋk are unit norm vectors
known as atoms. Thus if the dictionary Ḋ is given, the aim
is to find the sparse vector of coefficients ẋ ∈ On×1 known
as the sparse code such that ‖ẋ‖0 ≤ L and ẏ ≈ Ḋẋ. L =
const. is the prescribed number of non-zero octonion elements
in the octonion vector ẋ, also known as the sparsity level. The
pseudo-norm `0 counts the number of non-zero components of
the given octonion vector. Formally the sparse coding problem
can be expressed as

ˆ̇x = argmin
ẋ∈On×1

‖ẏ − Ḋẋ‖22 s.t. ‖ẋ‖0 ≤ L. (2)



An alternative approach is to convexify the original problem
(2) by replacing the `0 norm with the `1 norm, which leads
to the LASSO problem [11], whose equivalent Lagrangian for-
mulation known as Basis Pursuit Denoising (BPDN) [12] over
octonions is given by

ˆ̇x = argmin
ẋ∈On×1

‖ẏ − Ḋẋ‖22 + λ‖ẋ‖1. (3)

This problem was first studied in [13]. The approach presented
there leads to a solution which gives nearly perfect reconstru-
ction of the signal, but at the expense of a very high compu-
tational complexity compared to sparse coding of real-valued
signals. We explore thus a unified framework for formulating
octonion sparse coding models in terms of the corresponding
problems over real numbers, using thereby the efficient avai-
lable solvers, and we compare the performance of `0 and `1
formulations under this setup.

3 Sparse coding techniques
Here we introduce a unified octonion algebra sparse coding
approach that will allow us to formulate diverse minimization
problems over the octonion algebra as the equivalent minimiza-
tion problems over the real numbers. We shall use the vec-
torization operator ν : On×1 → R8n×1 such that ‖ẋ‖2 =
‖ν(ẋ)‖2. Note that in this way the real vector space isomor-
phism ν : On×1 → R8n×1 is obtained. Another useful op-
erator is a matrix operator χ : On×m → R8n×8m, with the
property ν(Ḋẋ) = χ(Ḋ)ν(ẋ). The explicit forms of the opera-
tors ν and χ together with the proofs of many useful properties
can be found in [14, 15, 4].

3.1 `0 minimization problem
We will show here that the idea of the Orthogonal Match-
ing Pursuit (OMP) [16] can be adapted to the octonion set-
ting. In each step k the algorithm selects the atom ḋk that
produces the strongest decrease in the residual ‖ṙk‖22 where
ṙk = ṙk−1 − ḋkẋk, and ṙ0 = ẏ. In the octonion setting, this is
equivalent with selecting the atom that is most correlated with
the residual vector i.e. 〈ṙk, ḋk〉. After choosing the atom that
produces the maximum absolute value in the inner product with
the residual, the active dictionary is formed Ḋk = [Ḋk−1, ḋk]
and the coding coefficients ẋk are selected so that the norm
‖ẏ−Ḋkẋ‖22 is minimized. Solving linear least square problems
in the octonion setting is difficult. Therefore, we transform this
minimization problem into a real vector minimization problem.
Observe that∥∥∥ẏ − Ḋkẋ

∥∥∥2
2
=
∥∥∥ν (ẏ − Ḋkẋ

)∥∥∥2
2
=
∥∥∥ν (ẏ)− χ(Ḋk

)
ν (ẋ)

∥∥∥2
2
.

By minimizing the last expression on the right we are solving
the real minimization problem. The octonion coefficient vector
ẋk is then obtained by using the inverse map ν−1. Note that
the inverse ν−1 exists since ν is bijective. Finally, the solution
is given by ẋk = ν−1(χ(Ḋk)†ν(ẏ)), where (·)† is the Moore-
Penrose (pseudo)inverse of a real matrix χ(Ḋk).

3.2 `1 minimization problem
Now we will show that the `1 minimization problem that was
earlier addressed in [13] can be compactly written and imple-
mented by using the previously introduced operators ν and χ.

This allows us to represent both approaches in a unified way.
The problem (3) can be equivalently written as

min
t∈R+

t s.t. ẏ = Ḋẋ, ‖ẋ‖1 ≤ t. (4)

By decomposing t =
n∑

i=1

ti, ti ∈ R+ we can write the last

constraint as

‖ẋ‖1 =

n∑
i=1

‖ẋi‖2 =

n∑
i=1

‖ν(ẋi)‖2 ≤ 1T t = 1T · [t1, . . . , tn] = t.

The minimization problem in (4) then becomes

min
t∈R+

1T t s.t. ẏ = Ḋẋ, ‖ν(ẋi)‖2 ≤ ti, (5)

for every i = 1, . . . , n. By denoting

x̂ = [t1, ν (ẋ1) , . . . , tn, ν (ẋn)]
T ∈ R9n×1,

ĉ = [cj ]j =

{
1, if j = 9i− 8

0, otherwise,
,

ŷ = ν (ẏ) ∈ R8m×1,

D̂ =
[
0, χ

(
ḋ1

)
, . . . ,0, χ

(
ḋn

)]
∈ R8m×9n

for every i = 1, . . . , n, (5) can be equivalently written in the
form of the classical second-order cone optimization problem
[9] as:

min
x̂∈R9n

ĉT x̂ s.t. ŷ = D̂x̂, ‖ν(ẋi)‖2 ≤ ti. (6)

This problem can be solved by SeDuMi software [17, 18, 19].
It can be shown that `1 minimization problem over octo-

nions can also be represented as a convex problem suited for
application of the Alternating Direction Method of Multipliers
(ADMM). In order to do so, apart from the operators ν and
χ, we need another operator R : On×1 → Rn×8 such that
‖ẋ‖1 = ‖R(ẋ)‖2,1. A detailed derivation is in [20].

O-OMP `1 with ADMM `1 as SOCP
PSNR 39.28 dB 63.34 dB 98.06 dB
Time 290 s 14 min 101 min

Table 1: Average reconstruction values with the computation times for 1D
octonion signals which are produced by extracting random patches from
Landsat 7 images. Sparsity level for O-OMP has been set to 5.

4 Results and discussions
Table 1 reports average reconstruction errors for 1D octonion
signals extracted from Landsat 7 images. For the `1 problem
we give the results using two solvers SOCP [9] and ADMM
[21]. It can be observed that the SOCP model gives nearly
perfect reconstruction of the signal, but it is more time con-
suming in comparison with the other two methods. The re-
sults obtained by ADMM based model showed improvements
in terms of the mean squared error values compared to the O-
OMP model. Moreover, this model is soundly fast compared
to the SOCP model. The indicative computation times in Ta-
ble 1 were obtained in MATLAB on Intel Core-i7 CPU with
16GB memory. Most importantly, we showed that both `0 and
`1 minimization problems for octonion signals can be equiva-
lently formulated as real minimization problems by introducing
suitable matrix operators.
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